
A Survey of Program Slicing Techniques

Frank Tip�

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

tip@cwi.nl

Abstract

A program slice consists of the parts of a program that (potentially) affect the values
computed at some point of interest. Such a point of interest is referred to as a slicing criterion,
and is typically specified by a location in the program in combination with a subset of the
program’s variables. The task of computing program slices is called program slicing. The
original definition of a program slice was presented by Weiser in 1979. Since then, various
slightly different notions of program slices have been proposed, as well as a number of methods
to compute them. An important distinction is that between a static and a dynamic slice. Static
slices are computed without making assumptions regarding a program’s input, whereas the
computation of dynamic slices relies on a specific test case.

This survey presents an overview of program slicing, including the various general ap-
proaches used to compute slices, as well as the specific techniques used to address a variety
of language features such as procedures, unstructured control flow, composite data types and
pointers, and concurrency. Static and dynamic slicing methods for each of these features are
compared and classified in terms of their accuracy and efficiency. Moreover, the possibilities
for combining solutions for different features are investigated. Recent work on the use of
compiler-optimization and symbolic execution techniques for obtaining more accurate slices
is discussed. The paper concludes with an overview of the applications of program slicing,
which include debugging, program integration, dataflow testing, and software maintenance.

1 Overview

We present a survey of algorithms for program slicing that can be found in the present literature.
A program slice consists of the parts of a program that (potentially) affect the values computed at
some point of interest. Such a point of interest is referred to as a slicing criterion, and is typically
specified by a pair �program point� set of variables�. The parts of a program that have a direct or
indirect effect on the values computed at a slicing criterion C constitute the program slice with
respect to criterion C . The task of computing program slices is called program slicing.

The original concept of a program slice was introduced by Weiser [1, 2, 3]. Weiser claims
that a slice corresponds to the mental abstractions that people make when they are debugging a
program, and advocates the integration of program slicers in debugging environments. Various
slightly different notions of program slices have since been proposed, as well as a number of
methods to compute slices. The main reason for this diversity is the fact that different applications

�Supported in part by the European Union under ESPRIT project # 5399 (Compiler Generation for Parallel Machines—
COMPARE).

1

(1) read(n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i �� n do

begin
(6) sum := sum + i;
(7) product := product * i;
(8) i := i + 1

end;
(9) write(sum);
(10) write(product)

read(n);
i := 1;

product := 1;
while i �� n do
begin

product := product * i;
i := i + 1

end;

write(product)

(a) (b)

Figure 1: (a) An example program. (b) A slice of the program w.r.t. criterion (10, product).

require different properties of slices. Weiser defined a program slice S as a reduced, executable
program obtained from a program P by removing statements, such that S replicates part of the
behavior of P . Another common definition of a slice is a subset of the statements and control
predicates of the program that directly or indirectly affect the values computed at the criterion, but
that do not necessarily constitute an executable program. An important distinction is that between
a static and a dynamic slice. The former is computed without making assumptions regarding
a program’s input, whereas the latter relies on some specific test case. Below, in Sections 1.1
and 1.2, these notions are introduced in some detail.

Features of programming languages such as procedures, unstructured control flow, composite
data types and pointers, and concurrency each require specific extensions of slicing algorithms.
Static and dynamic slicing methods for each of these features are classified and compared in terms
of accuracy and efficiency. In addition, possibilities for integrating solutions for different language
features are investigated. Throughout this paper, slicing algorithms are compared by applying
them to similar examples.

1.1 Static slicing

Figure 1 (a) shows an example program that asks for a number n, and computes the sum and the
product of the first n positive numbers. Figure 1 (b) shows a slice of this program with respect to
criterion (10, product). As can be seen in the figure, all computations not relevant to the (final
value of) variable product have been “sliced away”.

In Weiser’s approach, slices are computed by computing consecutive sets of transitively
relevant statements, according to data flow and control flow dependences. Only statically available
information is used for computing slices; hence, this type of slice is referred to as a static slice. An
alternative method for computing static slices was suggested by Ottenstein and Ottenstein [4], who
restate the problem of static slicing in terms of a reachability problem in a program dependence
graph (PDG) [5, 6]. A PDG is a directed graph with vertices corresponding to statements and
control predicates, and edges corresponding to data and control dependences. The slicing criterion
is identified with a vertex in the PDG, and a slice corresponds to all PDG vertices from which
the vertex under consideration can be reached. Various program slicing approaches discussed
below utilize modified and extended versions of PDGs as their underlying program representation.
Yet another approach was proposed by Bergeretti and Carré [7], who define slices in terms of

2

information-flow relations, which are derived from a program in a syntax-directed fashion.
The slices mentioned so far are computed by gathering statements and control predicates by

way of a backward traversal of the program’s control flow graph (CFG) or PDG, starting at the
slicing criterion. Therefore, these slices are referred to as backward (static) slices. Bergeretti and
Carré [7] were the first to define the notion of a forward static slice, although Reps and Bricker
[8] were the first to use this terminology. Informally, a forward slice consists of all statements and
control predicates dependent on the slicing criterion, a statement being “dependent” on the slicing
criterion if the values computed at that statement depend on the values computed at the slicing
criterion, or if the values computed at the slicing criterion determine the fact if the statement under
consideration is executed or not. Backward and forward slices1 are computed in a similar way;
the latter requires tracing dependences in the forward direction.

1.2 Dynamic slicing

Although the exact terminology “dynamic program slicing” was first introduced by Korel and
Laski [9], dynamic slicing may very well be regarded as a non-interactive variation of Balzer’s
notion of flowback analysis [10]. In flowback analysis, one is interested in how information
flows through a program to obtain a particular value: the user interactively traverses a graph that
represents the data and control dependences between statements in the program. For example, if
the value computed at statement s depends on the values computed at statement t, the user may
trace back from the vertex corresponding to s to the vertex for t. Recently, Choi et al. [11, 12]
have made an efficient implementation of flowback analysis for parallel programs.

In the case of dynamic program slicing, only the dependences that occur in a specific execution
of the program are taken into account. A dynamic slicing criterion specifies the input, and
distinguishes between different occurrences of a statement in the execution history; typically,
it consists of triple �input� occurrence of a statement� variable�. In other words, the difference
between static and dynamic slicing is that dynamic slicing assumes fixed input for a program,
whereas static slicing does not make assumptions regarding the input. A number of hybrid
approaches, where a combination of static and dynamic information is used to compute slices,
can be found in the literature. Choi et al. [12], Duesterwald et al. [13], and Kamkar [14] use
static information in order to decrease the amount of computations that have to be performed at
run-time. Venkatesh [15], Ning et al. [16], and Field, Ramalingam, and Tip [17, 18] consider
situations where only a subset of the inputs to program are constrained.

Figure 2 shows an example program, and its dynamic slice w.r.t. the criterion (n = 2, 81, x),
where 81 denotes the first occurrence of statement 8 in the execution history of the program. Note
that for input n = 2, the loop is executed twice, and that the assignments x := 17 and x :=
18 are each executed once. In this example, the else branch of the if statement may be omitted
from the dynamic slice since the assignment of 18 to variable x in the first iteration of the loop is
“killed” by the assignment of 17 to x in the second iteration2. By contrast, the static slice of the
program in Figure 2 (a) w.r.t. criterion (8, x) consists of the entire program.

1Unless stated otherwise, “slice” will denote “backward slice” in this paper.
2In fact, one might argue that the while construct may be replaced by the if statement in its body. This type of slice

will be discussed in Section 6.

3

(1) read(n);
(2) i := 1;
(3) while (i �� n) do

begin
(4) if (i mod 2 = 0) then
(5) x := 17

else
(6) x := 18;
(7) i := i + 1

end;
(8) write(x)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

i := i + 1
end;
write(x)

(a) (b)

Figure 2: (a) Another example program. (b) Dynamic slice w.r.t. criterion (n = 2, 81, x).

1.3 Applications of slicing

The main application that Weiser had in mind for slicing was debugging [1, 2, 3]: if a program
computes an erroneous value for some variable x at some program point, the bug is likely to be
found in the slice with respect to x at that point. The use of slicing for debugging was further
explored by Lyle and Weiser [19], Choi et al. [12], Agrawal et al. [20], Fritzson et al. [21], and
Pan and Spafford [22, 23].

A number of other applications has since been proposed: parallelization [24], program dif-
ferencing and integration [25, 26], software maintenance [27], testing [13, 28, 29, 30], reverse
engineering [31, 32, 33], and compiler tuning [34]. Section 5 contains an overview of how slicing
is used in each of these application areas.

1.4 Related work

There are a number of earlier frameworks for comparing slicing methods, as well as some earlier
surveys of slicing methods.

Venkatesh [15] presents formal definitions of several types of slices in terms of denotational
semantics. He distinguishes three independent dimensions according to which slices can be
categorized: static vs. dynamic, backward vs. forward, and closure vs. executable. Some of the
slicing methods in the literature are classified according to these criteria [3, 4, 26, 35, 36, 37].

Lakhotia [38] restates a number of static slicing methods [3, 4, 26] as well as the program
integration algorithm of Horwitz, Prins, and Reps [26] in terms of operations on directed graphs.
He presents a uniform framework of graph slicing, and distinguishes between syntactic properties
of slices that can be obtained solely through graph-theoretic reasoning, and semantic properties,
which involve interpretation of the graph representation of a slice. Although the paper only
addresses static slicing methods, it is stated that some dynamic slicing methods [35, 37] may be
modeled in a similar way.

Gupta and Soffa present a generic algorithm for static slicing and the solution of related
dataflow problems (such as determining reaching definitions) that is based on performing a traversal
of the control flow graph [39]. The algorithm is parameterized with: (i) the direction in which the
CFG should be traversed (backward or forward), (ii) the type of dependences under consideration
(data and/or control dependence), (iii) the extent of the search (i.e., should only immediate
dependences be taken into account, or transitive dependences as well), and (iv) whether only

4

the dependences that occur along all CFG-paths paths, or dependences that occur along some
CFG-path should be taken into account. A slicing criterion is either a set of variables at a certain
program point or a set of statements. For slices that take data dependences into account, one may
choose between the values of variables before or after a statement.

Horwitz and Reps [40] present a survey of the work that has been done at the University
of Wisconsin-Madison on slicing, differencing, and integration of single-procedure and multi-
procedure programs as operations on PDGs [41, 26, 42, 25, 36, 43]. In addition to presenting
an overview of the most significant definitions, algorithms, theorems, and complexity results, the
motivation for this research is discussed in considerable detail.

An earlier classification of static and dynamic slicing methods was presented by Kamkar
[44, 14]. The differences between Kamkar’s work and ours may be summarized as follows. First,
this work is more up-to-date and complete; for instance, Kamkar does not address any of the
papers that discuss slicing in the presence of unstructured control flow [45, 46, 47, 48] or methods
for computing slices that are based on information-flow relations [7, 49]. Second, the organization
of our work and Kamkar’s is different. Whereas Kamkar discusses each slicing method and its
applications separately, this survey is organized in terms of a number of “orthogonal” dimensions,
such as the problems posed by procedures, or composite variables, aliasing, and pointers. This
approach enables us to consider combinations of solutions to different dimensions. Third, unlike
Kamkar we compare the accuracy and efficiency of slicing methods (by applying them to the
same or similar example programs), and attempt to determine their fundamental strengths and
weaknesses (i.e., irrespective of the original presentation). Finally, Kamkar does not discuss any
of the recent papers [17, 18, 50] on improving the accuracy of slicing by employing compiler-
optimization techniques.

1.5 Organization of this paper

The remainder of this paper is organized as follows. Section 2 introduces the cornerstones of most
slicing algorithms: the notions of data dependence and control dependence. Readers familiar with
these concepts may skip this section and consult it when needed. Section 3 contains an overview of
static slicing methods. First, we consider the simple case of slicing structured programs with only
scalar variables. Then, algorithms for slicing in the presence of procedures, unstructured control
flow, composite variables and pointers, and concurrency are considered. Section 3.6 compares and
classifies methods for static slicing. Section 4 addresses dynamic slicing methods, and is organized
in a similar way as Section 3. Applications of program slicing are discussed in Section 5. Section 6
discusses recent work on the use of compiler-optimization techniques for obtaining more accurate
slices. Finally, Section 7 summarizes the main conclusions of this survey.

2 Data dependence and control dependence

Data dependence and control dependence are defined in terms of the CFG of a program. A CFG
contains a node for each statement and control predicate in the program; an edge from node
i to node j indicates the possible flow of control from the former to the latter. CFGs contain
special nodes labeled START and STOP corresponding to the beginning and the end of the program,
respectively.

The sets DEF�i� and REF�i� denote the sets of variables defined and referenced at CFG node
i, respectively. Several types of data dependences can be distinguished, such as flow dependence,

5

Start

(10)

read(n) i := 1 sum := 0 product := 1 i <= n

Stop

i := i + 1

sum :=
sum+i

product*i
product :=

write(product) write(sum)

(1) (2) (3) (4) (5)

(6)

(7)

(8)

(9)

Figure 3: CFG of the example program of Figure 1 (a).

output dependence and anti-dependence [6]. Flow dependences can be further classified as being
loop-carried or loop-independent, depending whether or not they arise as a result of loop iteration.
For the purposes of slicing, only flow dependence is relevant, and the distinction between loop-
carried and loop-independent flow dependences can be ignored. Intuitively, a statement j is flow
dependent on statement i if a value computed at i is used at j in some program execution. In the
absence of aliasing [51, 52], flow dependence may be defined formally as follows: there exists
a variable x such that: (i) x � DEF�i�, (ii) x � REF�j�, and, (iii) there exists a path from i to j

without intervening definitions of x. Alternatively stated, the definition of x at node i is a reaching
definition for node j.

Control dependence is usually defined in terms of post-dominance. A node i in the CFG is
post-dominated by a node by j if all paths from i to STOP pass through j. A node j is control
dependent on a node i if (i) there exists a path P from i to j such that j post-dominates every node
in P , excluding i and j, and (ii) i is not post-dominated by j. Determining control dependences in
a program with arbitrary control flow is studied by Ferrante et al. [6]. For programs with structured
control flow, control dependences can be determined in a simple syntax-directed manner [53]: the
statements immediately3 inside the branches of an if or while statement are control dependent on
the control predicate.

As an example, Figure 3 shows the CFG for the example program of Figure 1 (a). Node 7 is
flow dependent on node 4 because: (i) node 4 defines variable product, (ii) node 7 references
variable product, and (iii) there exists a path 4 � 5 � 6 � 7 without intervening definitions
of product. Node 7 is control dependent on node 5 because there exists a path 5 � 6 � 7 such
that: (i) node 6 is post-dominated by node 7, and (ii) node 5 is not post-dominated by node 7.

Many of the slicing approaches that will be discussed in the sequel use the Program Dependence
Graph (PDG) representation of a program [5, 6]. The vertices of the PDG correspond to the
statements and control predicates of the program, and the edges of a PDG correspond to data and
control dependences between them. The dependence edges of a PDG define a partial ordering
on the statements of the program; the statements must be executed in this order to preserve the
semantics of the program.

In the PDGs of Horwitz et al. [53, 26, 43, 36], a distinction is made between loop-carried
and loop-independent flow dependences, and there is an additional type of data dependence edges
named def-order dependence edges. Horwitz et al. argue that their PDG variant is adequate:
if two programs have isomorphic PDGs, they are strongly equivalent. This means that, when

3A statement in a branch of an if statement that occurs within another if statement is only control dependent on the
predicate of the inner if statement.

6

product*i

Entry

read(n) i := 1 sum := 0 product := 1 while (i <= n) write(sum) write(product)

sum := sum+i i := i + 1product :=

Figure 4: PDG of the program in Figure 1 (a).

started with the same input state, they either compute the same values for all variables, or they
both diverge. It is argued that the PDG variant of [53] is minimal in the sense that removing
any of the types of dependence edges, or disregarding the distinction between loop-carried and
loop-independent flow edges would result in inequivalent programs having isomorphic PDGs.
However, for the computation of program slices, only flow dependences and control dependences
are necessary. Therefore, only these dependences will be considered in the sequel.

As an example, Figure 4 shows the PDG of the program of Figure 1 (a). In this figure, the PDG
variant of Horwitz, Reps, and Binkley [36] is used. Thick edges represent control dependences4

and thin edges represent flow dependences. The shading of certain vertices in the PDG of Figure 4
will be explained in Section 3.1.3.

3 Methods for static slicing

3.1 Basic algorithms

In this section, we will study basic algorithms for static slicing of structured, single-procedure
programs with scalar variables. These algorithms essentially compute the same information, but
in different ways.

3.1.1 Dataflow equations

Weiser’s original definition of program slicing [3] is based on iterative solution of dataflow
equations5. Weiser defines a slice as an executable program that is obtained from the original
program by deleting zero or more statements. A slicing criterion consists of a pair �n� V � where
n is a node in the CFG of the program, and V a subset of the program’s variables. In order to be a
slice with respect to criterion �n� V �, a subset S of the statements of program P must satisfy the
following properties: (i) S must be a valid program, and (ii) whenever P halts for a given input, S
also halts for that input, computing the same values for the variables in V whenever the statement

4The usual labeling of control dependence edges is omitted here, as this is irrelevant for the present discussion.
Furthermore, loop-carried flow dependence edges from a vertex to itself will be omitted, as such edges are irrelevant
for the computation of slices.

5Weiser’s definition of branch statements with indirect relevance to a slice contains an error [54]. In the present
paper, the modified definition proposed in [55] is followed. However, we do not agree with the statement in [55] that ‘It
is not clear how Weiser’s algorithm deals with loops’.

7

For each edge i�CFG j in the CFG:

R0
C
�i� � R0

C
�i� � f v j v � R0

C
�j�� v �� DEF�i� g � f v j v � REF�i�� DEF�i� � R0

C
�j� �� � g

S0
C

� fi j �DEF�i� � R0
C
�j�� �� �� i�CFG jg

Figure 5: Equations for determining directly relevant variables and statements.

Bk
C � fb j �i � SkC � i � INFL�b�g

Rk�1
C �i� � Rk

C�i� �
S
b�Bk

C
R0
�b�REF�b��

�i�

Sk�1
C � Bk

C � fi j DEF�i� �Rk�1
C �j� �� �� i�CFG jg

Figure 6: Equations for determining indirectly relevant variables and statements.

corresponding to node n is executed. At least one slice exists for any criterion: the program itself.
A slice is statement-minimal if no other slice for the same criterion contains fewer statements.
Weiser argues that statement-minimal slices are not necessarily unique, and that the problem of
determining statement-minimal slices is undecidable.

Weiser describes an iterative algorithm for computing approximations of statement-minimal
slices. It is important to realize that this algorithm uses two distinct “layers” of iteration. These
can be characterized as follows:

1. Tracing transitive data dependences. This requires iteration in the presence of loops.

2. Tracing control dependences, causing the inclusion in the slice of certain control predicates.
For each such predicate, step 1 is repeated to include the statements it is dependent upon.

The algorithm determines consecutive sets of relevant variables from which sets of relevant
statements are derived; the computed slice is defined as the fixpoint of the latter set. First, the
directly relevant variables are determined: this is an instance of step 1 of the iterative process
outlined above. The set of directly relevant variables at node i in the CFG is denoted R0

C�i�. The
iteration starts with the initial valuesR0

C�n� � V , andR0
C�m� � � for any nodem �� n. Figure 5

shows a set of equations that define how the set of relevant variables at the end j of a CFG edge
i�CFG j affects the set of relevant variables at the beginning i of that edge. The least fixed point
of this process is the set of directly relevant variables at node i. FromR0

C , a set of directly relevant
statements, S0

C , is derived. Figure 5 shows how S0
C is defined as the set of all nodes i that define

a variable v that is a relevant at a CFG-successor of i.
As mentioned, the second “layer” of iteration in Weiser’s algorithm consists of taking control

dependences into account. Variables referenced in the control predicate of an if or while statement
are indirectly relevant, if (at least) one of the statements in its body is relevant. To this end, the range
of influence INFL�b� of a branch statement b is defined as the set of statements control dependent6

6Actually, Weiser defines INFL�b� to be the set of statements transitively control dependent on b. The definition we
use here produces equivalent slices, but is more efficient.

8

NODE # DEF REF INFL R0
C R1

C

1 f n g � � � �
2 f i g � � � f n g
3 f sum g � � f i g f i, n g
4 f product g � � f i g f i, n g
5 � f i, n g f 6, 7, 8 g f product, i g f product, i, n g
6 f sum g f sum, i g � f product, i g f product, i, n g
7 f product g f product, i g � f product, i g f product, i, n g
8 f i g f i g � f product, i g f product, i, n g
9 � f sum g � f product g f product g
10 � f product g � f product g f product g

Table 1: Results of Weiser’s algorithm for the example program of Figure 1 (a) and slicing criterion
�10� f product g�.

on b. Figure 6 shows a definition of the branch statements Bk
C that are indirectly relevant due to

the influence they have on nodes i in SkC . Next, the sets of indirectly relevant variables Rk�1
C �i�

are determined. In addition to the variables in Rk
C�i�, R

k�1
C �i� contains variables that are relevant

because they have a transitive data dependence on statements in Bk
C . This is determined by

performing the first type of iteration again (i.e., tracing transitive data dependences) with respect
to a set of criteria �b�REF�b��, where b is a branch statement in Bk

C (see Figure 6). Figure 6 also
shows a definition of the sets Sk�1

C of indirectly relevant statements in iteration k � 1. This set
consists of the the nodes inBk

C together with the nodes i that define a variable that isRk�1
C -relevant

to a CFG-successor j.
The setsRk�1

C and Sk�1
C are nondecreasing subsets of the program’s variables and statements,

respectively; the fixpoint of the computation of the Sk�1
C sets constitutes the desired program slice.

As an example, consider slicing the program of Figure 1 (a) with respect to criterion
�10� fproductg�. Table 1 summarizes the DEF, REF, INFL sets, and the sets of relevant variables
computed by Weiser’s algorithm. The CFG of the program was shown earlier in Figure 3. From
the information in the table, and the definition of a slice, we obtain S0

C � f2� 4� 7� 8g, B0
C � f5g,

and S1
C � f1� 2� 4� 5� 7� 8g. For our example, the fixpoint of the sets of indirectly relevant

variables is reached at set S1
C . The corresponding slice w.r.t. criterion C � �10� f product g� as

computed by Weiser’s algorithm is identical to the program shown in Figure 1 (b) apart from the
fact that the output statement write(product) is not contained in the slice.

Lyle [56] presents a modified version of Weiser’s slicing algorithm. Apart from some minor
changes in terminology, this algorithm is essentially the same as Weiser’s [3].

Hausler [57] restates Weiser’s algorithm in a functional style. For each type of statement
(empty statement, assignment, statement composition, if, and while) he defines two functions �
and �. Roughly speaking, these functions express how a statement transforms the set of relevant
variables Ri

C , and the set of relevant statements SiC , respectively. The functions � and � are
defined in a compositional manner. For empty statements and assignments, � and � can be derived
from the statement in a syntax-directed manner. The � and � functions for statement sequences
and if statements, can be inferred from the � and � functions for their components, respectively.
The functions for a while statement are obtained by effectively transforming it into an infinite
sequence of if statements.

9

�� � �
�� � �
�� � ID

�S1;S2 � �S1 � ��S1 � �S2�
�S1;S2 � ��S1 � �S2� � �S2

�S1;S2 � �S1 � �S2

�v:�e � VARS�e�� f e g
�v:�e � f �e� v� g
�v:�e � �VARS�e�� f v g� � �ID � �v� v��

�if e then S1 else S2 � �VARS�e�� f e g� � �S1 � �S2

�if e then S1 else S2 � �f e g � �DEFS�S1� � DEFS�S2��� � �S1 � �S2

�if e then S1 else S2 � �VARS�e�� �DEFS�S1� � DEFS�S2��� � �S1 � �S2

�while e do S � ��S � ��VARS�e�� f e g� � �S�
�while e do S � �f e g � DEFS�S�� � �S � �

�
S � ��VARS�e�� DEFS�S�� � ID�

�while e do S � ��S � ��VARS�e�� DEFS�S�� � ID�

Figure 7: Definition of information-flow relations.

EXPRESSION #a POTENTIALLY AFFECTED VARIABLES

1 f n� sum� product� i g
2 f sum� product� i g
3 f sum g
4 f product g
5 f sum� product� i g
6 f sum g
7 f product g
8 f sum� product� i g
9 �

10 �

aExpression numbers correspond to line numbers in Figure 1 (a).

Figure 8: Information-flow relation � for the example program of Figure 1 (a).

3.1.2 Information-flow relations

Bergeretti and Carré [7] define a number of information-flow relations that can be used to compute
slices. For a statement (or sequence of statements) S, a variable v, and an expression (i.e., a control
predicate or the right-hand side of an assignment) e that occurs in S, the relations �S , �S , and �S
are defined. These information-flow relations possess the following properties: �v� e� � �S iff
the value of v on entry to S potentially affects the value computed for e, �e� v� � �S iff the value
computed for e potentially affects the value of v on exit from S, and �v� v�� � �S iff the value of
v on entry to S may affect the value of v� on exit from S. The set Ev

S of all expressions e for
which �e� v� � �S can be used to construct partial statements. A partial statement of statement
S associated with variable v is obtained by replacing all statements in S that do not contain
expressions in Ev

S by empty statements. This yields the slice with respect to the final value of v.
Information-flow relations are computed in a syntax-directed, bottom-up manner. For an

empty statement, the relations �S and �S are empty, and �S is the identity. For an assignment v :=
e, �S contains �v�� e� for all variables v� that occur in e, �S consists of �e� v�, and �S contains �v�� v�
for all variables v� that occur in e as well as �v��� v��� for all variables v�� �� v. Figure 7 shows how
information-flow relations for sequences of statements, conditional statements and loop statements
are constructed from the information-flow relations of their constituents. In the figure, � denotes

10

an empty statement, “	” relational join7, ID the identity relation, VARS�e� the set of variables
occurring in expression e, and DEFS�S� the set of variables that may be defined in statement S.
The convoluted definition for while constructs is obtained by effectively transforming it into an
infinite sequence of nested one-branch if statements. The relation �� used in this definition is the
transitive and reflexive closure of �.

A slice w.r.t. the value of a variable v at an arbitrary location can be computed by inserting a
dummy assignment v� :� v at the appropriate place, where v� is a variable that did not previously
occur in S. The slice w.r.t. the final value of v� in the modified program is equivalent to a slice
w.r.t. v at the selected location in the original program.

Static forward slices can be derived from relation �S in a way that is similar to the method for
computing static backward slices from the �S relation.

Figure 8 shows the information-flow relation � for the (entire) program of Figure 1 (a)8. From
this relation it follows that the set of expressions that potentially affect the value of product at
the end of the program are f 1� 2� 4� 5� 7� 8 g. The corresponding partial statement is obtained
by omitting all statements from the program that do not contain expressions in this set, i.e., both
assignments to sum and both write statements. The result is identical to the slice computed by
Weiser’s algorithm (see Section 3.1.1).

3.1.3 Dependence graph based approaches

Ottenstein and Ottenstein [4] were the first of many to define slicing as a reachability problem in
a dependence graph representation of a program. They use the PDG [5, 6] for static slicing of
single-procedure programs.

In dependence graph based approaches, the slicing criterion is identified with a vertex v in
the PDG. In Weiser’s terminology, this corresponds to a criterion �n� V � where n is the CFG
node corresponding to v, and V the set of all variables defined or used at v (the fine-grained
PDGs of Jackson and Rollins, discussed below, are an exception here). However, we consider
this difference to be insignificant; in Section 3.6.2, it will be discussed how more precise slicing
criteria can be “simulated” by PDG-based slicing methods. For single-procedure programs, the
slice w.r.t. v consists of all vertices that can reach v. The related parts of the source text of the
program can be found by maintaining a mapping between vertices of the PDG and the source text
during the construction of the PDG.

The PDG variant of Ottenstein and Ottenstein [4] shows considerably more detail than that by
Horwitz, Reps, and Binkley [36]. In particular, there is a vertex for each (sub)expression in the
program, and file descriptors appear explicitly as well. As a result, read statements involving
irrelevant variables are not “sliced away”, and slices will execute correctly with the full input of
the original program.

In Figure 4 the PDG of the program of Figure 1 (a) was shown. Shading is used to indicate
the vertices in the slice w.r.t. write(product).

Jackson and Rollins [32] introduce a variation on the PDG that is distinguished by fine-grained
dependences between individual variables defined or used at program points. An advantage of

7The join of two relations R1 and R2 contains all pairs �e1� e3� for which there exists an e2 such that �e1� e2� � R1

and �e2� e3� � R2.
8Bergeretti and Carré do not define information-flow relations for I/O statements. For the purposes of this example, it

is assumed that the statement read(n) can be treated as an assignment n := SomeConstant, and that the statements
write(sum) and write(product) should be treated as empty statements.

11

this approach is that it allows for slicing criteria that are more detailed than those of the previously
discussed PDG-based algorithm. A slice w.r.t. any variable that is either defined or used at a
program point can be extracted directly from the dependence graph. This enables one to determine
more accurately which variables are responsible for the inclusion of a particular statement in a
slice.

Each vertex consists of a box that contains a separate port for each variable defined at that
program point, as well as for each variable used at that point. Dependence relations between vari-
ables used at a program point p, and variables defined at p are represented by internal dependence
edges inside the box for p. Data dependences between statements are defined in the usual way,
in terms of reaching definitions. Control dependences between statements, however, are modeled
as mock data dependences. To this end, each box has an � port that represents the “execution
of” the associated statement. Control predicates are assumed to define a temporary value that is
represented by a � port. If a statement with box p is control dependent on a statement with box
q, this is modeled by a dependence edge from p’s � port to q’s � port. Finally, dependences on
constant values and input values are represented by 	 ports—the role of these ports is irrelevant
for the present discussion.

Jackson and Rollins generalize the traditional notion of a slicing criterion to a pair �source� sink�,
where source is a set of definition ports and sink a set of use ports. Slicing is generalized to chop-
ping: determining the subset of the program’s statements that cause influences of source elements
on sink elements. Conceptually, chops can be computed by solving a reachability problem in a
modular dependence graph. However, Jackson and Rollins formally define their algorithm in a
purely relational fashion, as a number of relations between ports; a description of this is outside
the scope of this paper. It is argued that conventional notions slicing of backward and forward
slicing can be expressed in terms of chopping.

3.2 Procedures

The main problem posed by interprocedural static slicing is that, in order to compute accurate
slices, the call-return structure of interprocedural execution paths must be taken into account.
Simple algorithms that include statements in a slice by traversing (some representation of) the
program in a single pass have the property that they consider infeasible execution paths, causing
slices to become larger than necessary. Several solutions to this problem, often referred to as the
“calling-context” problem, will be discussed below.

3.2.1 Dataflow equations

Weiser’s approach for interprocedural static slicing [3, 54] involves three separate tasks.

 First, interprocedural summary information is computed, using previously developed tech-
niques [58]. For each procedure P , a set MOD�P � of variables that may be modified by P is
computed, and a set USE�P � of variables that may be used by P . In both cases, the effects
of procedures transitively called by P are taken into account.

 The second component of Weiser’s algorithm is an intraprocedural slicing algorithm. This
algorithm was discussed previously in Section 3.1.1. However, it is slightly extended in order
to determine the effect of call-statements on the sets of relevant variables and statements that
are computed. This is accomplished using the summary information computed in step (1).
A call to procedureP is treated as a conditional assignment statement ‘if
SomePredicate�

12

program Main;
� � �

while (� � �) do
P(x1, x2, � � �, xn);
z := x1;
x1 := x2;
x2 := x3;
� � �
x�n�1� := xn

end;
(L) write(z)

end

procedure P(y1, y2, � � �, yn);
begin
write(y1);
write(y2);
� � �

(M) write(yn)
end

Figure 9: A program where procedure P is sliced n times by Weiser’s algorithm for criterion �L� f z g�.

then MOD�P � := USE�P �’ where actual parameters are substituted for formal parameters
[54]. Worst-case assumptions have to be made when a program calls external procedures,
and the source-code is unavailable.

 The third part is the actual interprocedural slicing algorithm that iteratively generates new
slicing criteria with respect to which intraprocedural slices are computed in step (2). For
each procedure P , new criteria are generated for (i) procedures Q called by P , and (ii)
procedures R that call P . The new criteria of (i) consist of all pairs �nQ� VQ� where nQ is
the last statement ofQ and VQ is the set of relevant variables in P in the scope ofQ (formals
are substituted for actuals). The new criteria of (ii) consist of all pairs �NR� VR� such that
NR is a call to P in R, and VR is the set of relevant variables at the first statement of P that
is in the scope of R (actuals are substituted for formals).

Weiser formalizes the generation of new criteria by way of functions UP�S� and DOWN�S�
that map a set S of slicing criteria in a procedure P to a set of criteria in procedures that call P ,
and a set of criteria in procedures called by P , respectively. The set of all criteria with respect
to which intraprocedural slices are computed consists of the transitive and reflexive closure of the
UP and DOWN relations; this is denoted �UP � DOWN�*. Thus, for an initial criterion C , slices
will be computed for all criteria in the set �UP � DOWN�*�f C g�.

Weiser determines the criteria in this set “on demand” [54]: the generation of new criteria in
step (3) and the computation of intraprocedural slices in step (2) are intermixed; the iteration stops
when no new criteria are generated. Although the number of intraprocedural slices computed
in step (2) could be reduced by combining “similar” criteria (e.g., replacing two criteria �n� V1�
and �n� V2� by a single criterion �n� V1 � V2�), Weiser writes that “no speed-up tricks have been
implemented” [3, page 355, col.2]. In fact, one would expect that such speed-up tricks would
affect the performance of his algorithm dramatically. The main issue is that the computation of the
UP and DOWN sets requires that the sets of relevant variables are known at all call sites. In other
words, the computation of these sets relies on slicing these procedures. In the course of doing
this, new variables may become relevant at previously encountered call sites, and new call sites
may be encountered. Consider for example, the program shown in Figure 9. In the subsequent
discussion, L denotes the program point at statement write(z) and M the program point at the
last statement in procedure P. Computing the slice w.r.t. criterion �L� f z g� requires n iterations
of the body of the while loop. During the ith iteration, variables x1� 	 	 	 � xi will be relevant at the
call site, causing the inclusion of criterion �M� f y1� 	 	 	 � yi g� in DOWN�Main�. If no precaution

13

program Example;
begin

(1) a := 17;
(2) b := 18;
(3) P(a, b, c, d);
(4) write(d)

end

procedure P(v, w, x, y);
(5) x := v;
(6) y := w

end

program Example;
begin

a := 17;
b := 18;
P(a, b, c, d);

end

procedure P(v, w, x, y);
;

y := w
end

program Example;
begin

;
b := 18;
P(a, b, c, d);
write(d)

end

procedure P(v, w, x, y);
;

y := w
end

(a) (b) (c)

Figure 10: (a) Example program. (b) Weiser’s slice with respect to criterion �4� f d g�. (a) A slice with
respect to the same criterion computed by the Horwitz-Reps-Binkley algorithm.

program Example;
begin

(1) read(n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i �� n do

begin
(6) Add(sum, i);
(7) Multiply(product, i);
(8) Add(i, 1)

end;
(9) write(sum);
(10) write(product)

end

procedure Add(a; b);
begin

(11) a := a + b
end

procedure Multiply(c; d);
begin

(12) j := 1;
(13) k := 0;
(14) while j �� d do

begin
(15) Add(k, c);
(16) Add(j, 1);

end;
(17) c := k

end

Figure 11: Example of a multi-procedure program.

is taken to combine the criteria in DOWN�Main�, procedure P will be sliced n times.
The fact that Weiser’s algorithm does not take into account which output parameters are

dependent on which input parameters is a source of imprecision. Figure 10 (a) shows an example
program that manifests this problem. For criterion �4� f d g�, Weiser’s interprocedural slicing
algorithm [3] will compute the slice shown in Figure 10 (b). This slice contains the statement
a := 17 due to the spurious dependence between variable a before the call, and variable d after
the call. The Horwitz-Reps-Binkley algorithm that will be discussed in Section 3.2.3 will compute
the more accurate slice shown in Figure 10 (c).

Horwitz, Reps, and Binkley [36] report that Weiser’s algorithm for interprocedural slicing is
unnecessarily inaccurate, because of what they refer to as the “calling context” problem. In a
nutshell, the problem is that when the computation “descends” into a procedure Q that is called
from a procedure P , it will “ascend” to all procedures that call Q, not only P . This includes
infeasible execution paths that enter Q from P and exit Q to a different procedure. Traversal of
such paths gives rise to inaccurate slices.

Figure 11 shows a program that exhibits the calling-context problem. For example, assume
that a slice is to be computed w.r.t. criterion �10�product�. Using summary information to
approximate the effect of the calls, the initial approximation of the slice will consist of the entire

14

main procedure except lines 3 and 6. In particular, the procedure calls Multiply(product,
i) and Add(i, 1) are included in the slice, because: (i) the variables product and i
are deemed relevant at those points, and (ii) using interprocedural data flow analysis it can be
determined that MOD�Add� � f a g, USE�Add� � f a, b g, MOD�Multiply� � f c g, and
USE�Multiply� � f c, d g. As the initial criterion is in the main program, we have that
UP�f �10�product� g� � �, and that DOWN�f �10�product� g� contains the criteria �11� fa g�
and �17� f c, d g�. The result of slicing procedure Add for criterion �11� f a g� and procedure
Multiply for criterion �17� fc, d g� will be the inclusion of these procedures in their entirety.
Note that the calls to Add at lines 15 and 16 cause the generation of a new criterion �11� fa, bg�
and thus re-slicing of procedure Add. It can now be seen that the example program exhibits the
“calling context” problem: Since line (11) is in the slice, new criteria are generated for all calls
to Add. These calls include the (already included) calls at lines 8, 15, and 16, but also the call
Add(sum, i) at line 6. The new criterion �6� f sum, i g� that is generated will cause the
inclusion of lines 6 and 3 in the slice. Consequently, the slice consists of the entire program.

It is our conjecture that the calling context problem of Weiser’s algorithm can be fixed by
observing that the criteria in the UP sets are only needed to include procedures that (transitively)
call the procedure containing the initial criterion9. Once this is done, only DOWN sets need
to be computed. For an initial criterion C , this corresponds to determining the set of criteria
DOWN*�UP*�f C g��, and computing the intraprocedural slices with respect to each of these
criteria. Reps [60] suggested that this essentially corresponds to the two passes of the Horwitz-
Reps-Binkley algorithm (see Section 3.2.3) if all UP sets are computed before determining any
DOWN sets.

Hwang, Du, and Chou [61] propose an iterative solution for interprocedural static slicing based
on replacing (recursive) calls by instances of the procedure body. From a conceptual point of view,
each iteration comprises of the following two steps. First, procedure calls are inlined, substituting
actual parameters for formal parameters. Then, the slice is re-computed, where any remaining
procedure call is treated as if it were an empty statement (i.e., it is assumed to have no effect on the
flow dependences between its surrounding statements). This iterative process terminates when the
resulting slice is identical to the slice computed in the previous iteration—i.e., until a fixed point
is reached. It is assumed that some mapping is maintained between the statements in the various
expanded versions of the program, and in the original program.

The approach of Hwang et al. does not suffer from the calling context problem because
expansion of recursive calls does not lead to considering infeasible execution paths. However,
Reps [62, 63] has shown recently that for a certain family Pk of recursive programs, this algorithm
takes time O�2k�, i.e., exponential in the length of the program. An example of such a program
is shown in Figure 12 (a). Figure 12 (b) shows the exponentially long path that is effectively
traversed by the Hwang-Du-Chou algorithm.

3.2.2 Information-flow relations

Bergeretti and Carré [7] explain how the effect of procedure calls can be approximated in the
absence of recursion. Exact dependences between input and output parameters are determined
by slicing the called procedure with respect to each output parameter (i.e., computation of the
� relation for the procedure). Then, each procedure call is replaced by a set of assignments,

9A similar observation was made by Jiang et al. [59]. However, they do not explain that this approach only works
when a call to procedure p is treated as a conditional assignment if �SomePredicate� then MOD�P � := USE�P �.

15

program P3(x1, x2, x3);
begin
t := 0;
P3(x2, x3, t);
P3(x2, x3, t);

(L) x1 := x1 + 1
end;

P

P

P P

P
0

P P

P
0

0

P

P P

P
0

P P

P
0

0

(a) (b)

Figure 12: (a) Example program. (b) Exponentially long path traversed by the Hwang-Du-Chou
algorithm for interprocedural static slicing for criterion �L�x3�.

where each output parameter is assigned a fictitious expression that contains the input parameters
it depends upon. As only feasible execution paths are considered, this approach does not suffer
from the calling context problem. A call to a side-effect free function can be modeled by replacing
it with a fictitious expression containing all actual parameters.

Note that the computed slices are not truly interprocedural since slices are not extended to
procedures other than the one containing the slicing criterion, as is done in the algorithm of
Section 3.2.1.

For the example program of Figure 11, the slice w.r.t. the final value of product would
include all statements except sum := 0, Add(sum,i), and write(sum).

3.2.3 Dependence graphs

Horwitz, Reps, and Binkley [36] present an algorithm for computing precise interprocedural static
slices, which consists of the following three components:

1. The System Dependence Graph (SDG), a graph representation for multi-procedure programs.

2. The computation of interprocedural summary information. This takes the form of precise
dependence relations between the input and output parameters of each procedure call, and
is explicitly present in the SDG in the form of summary edges.

3. A two-pass algorithm for extracting interprocedural slices from an SDG.

We will begin with a brief overview of SDGs. In the discussion that follows it is important to
realize that parameter passing by value-result10 is modeled as follows: (i) the calling procedure
copies its actual parameters to temporary variables before the call, (ii) the formal parameters of the
called procedure are initialized using the corresponding temporary variables, (iii) before returning,
the called procedure copies the final values of the formal parameters to the temporary variables,
and (iv) after returning, the calling procedure updates the actual parameters by copying the values
of the corresponding temporary variables.

10The Horwitz-Reps-Binkley algorithm [36] is also suitable for call-by-reference parameter passing provided that
aliases are resolved. To this end, two approaches are proposed: transformation of the original program into an equivalent
alias-free program, or the use of a generalized flow dependence notion that takes possible aliasing patterns into account.
The first approach yields more precise slices, whereas the second one—further explored by Binkley [64]—is more
efficient. For a discussion of parameter passing mechanisms the reader is referred to [65, Section 7.5].

16

An SDG contains a program dependence graph for the main program, and a procedure depen-
dence graph for each procedure. There are several types of vertices and edges in SDGs that do not
occur in PDGs. For each call statement, there is a call-site vertex in the SDG as well as actual-in
and actual-out vertices that model the copying of actual parameters to/from temporary variables.
Each procedure dependence graph has an entry vertex, and formal-in and formal-out vertices to
model copying of formal parameters to/from temporary variables11. Actual-in and actual-out
vertices are control dependent on the call-site vertex; formal-in and formal-out vertices are control
dependent on the procedure’s entry vertex. In addition to these intraprocedural dependence edges,
an SDG contains the following interprocedural dependence edges: (i) a control dependence edge
between a call-site vertex and the entry vertex of the corresponding procedure dependence graph,
(ii) a parameter-in edge between corresponding actual-in and formal-in vertices, (iii) a parameter-
out edge between corresponding formal-out and actual-out vertices, and (iv) summary edges that
represent transitive interprocedural data dependences.

The second part of the Horwitz-Reps-Binkley algorithm consists of the computation of sum-
mary edges between (vertices for) input and output parameters of a procedure. The presence of
such an edge reflects the fact that the incoming value of the input parameter may be used in obtain-
ing the outgoing value of the output parameter. The Horwitz-Reps-Binkley algorithm determines
summary edges by constructing an attribute grammar that models the calling relationships between
the procedures (as in a call graph). Then, the subordinate characteristic graph for this grammar is
computed. For each procedure in the program, this graph contains edges that correspond to precise
transitive flow dependences between its input and output parameters. The summary edges of the
subordinate characteristic graph are copied to the appropriate places at each call site in the SDG.
Details of the Horwitz-Reps-Binkley algorithm for determining summary edges are outside the
scope of this survey—for details, the reader is referred to [36]. Recently, more efficient algorithms
for determining summary edges have been presented [67, 63, 50]; these algorithms are discussed
below.

The third phase of the Horwitz-Reps-Binkley algorithm consists of a two-pass traversal of the
SDG. The summary edges of an SDG serve to circumvent the calling context problem. Assume
that slicing starts at some vertex s. The first phase determines all vertices from which s can
be reached without descending into procedure calls. The transitive interprocedural dependence
edges guarantee that calls can be side-stepped, without descending into them. The second phase
determines the remaining vertices in the slice by descending into all previously side-stepped calls.

Figure 13 shows the SDG for the program of Figure 11,where interprocedural dataflow analysis
is used to eliminate the vertices for the second parameters of the procedures Add and Multiply.
In the figure, thin solid arrows represent flow dependences, thick solid arrows correspond to control
dependences, thin dashed arrows are used for call, parameter-in, and parameter-out dependences,
and thick dashed arrows represent transitive interprocedural flow dependences. The vertices in the
slice w.r.t. statement write(product) are shown shaded; light shading indicates the vertices
identified in the first phase of the algorithm, and dark shading indicates the vertices identified in
the second phase. Clearly, the statements sum := 0, Add(sum, i), and write(sum) are
not in the slice.

Slices computed by Horwitz-Reps-Binkley algorithm [36] are not necessarily executable pro-
grams. Cases where only a subset of the vertices for actual and formal parameters are in the slice

11Using interprocedural data flow analysis [66], the sets of variables that can be referenced or modified by a procedure
can be determined. This information can be used to eliminate actual-out and formal-out vertices for parameters that
will never be modified, resulting in more precise slices.

17

a := a + b

Enter Example

read(n) i := 1 sum := 0 product := 1 while (i <= n) write(sum) write(product)

Add(sum,i)

a_in := sum b_in := i sum := a_out

Add(i,1)

a_in := i b_in := 1 i:= a_out

Mult.(product,i)

c_in := product d_in := i product:=c_out

c := c_in d := d_in

Enter Multiply

c_out := c

j := 1 k := 0 while (j <= d) c := k

Add(j, 1)

a_in := j b_in := 1 j := a_out

Add(k, c)

a_in := k b_in := c k := a_out

Enter Add

a := a_in b := b_in a_out := a

Figure 13: SDG of the program in Figure 11.

correspond to procedures where some of the arguments are “sliced away”; for different calls to the
procedure, different arguments may be omitted. Two approaches are proposed for transforming
such a non-executable slice an executable program. First, several variants of a procedure may be
incorporated in a slice [36]; this has the disadvantage that the slice is no longer a restriction of
the original program. The second solution consists of extending the slice with all parameters that
are present at some call to all calls that occur in the slice. In addition, all vertices on which the
added vertices are dependent must be added to the slice as well. This second approach is pursued
by Binkley [68]. Clearly the second approach yields larger slices than the first one.

Finally, it is outlined how interprocedural slices can be computed from partial SDGs (corre-
sponding to programs under development, or programs containing library calls) and how, using
the SDG, interprocedural forward slices can be computed in a way that is very similar to the
previously described method for interprocedural (backward) slicing.

Recently, Reps et al. [67, 63] proposed a new algorithm for computing the summary edges
of an SDG, which is asymptotically more efficient than the Horwitz-Reps-Binkley algorithm
[36] (the time requirements of these algorithms will be discussed in Section 3.6.3). Input to the
algorithm is an SDG where no summary edges have been added yet, i.e., a collection of procedure
dependence graphs connected by call, parameter-in, and parameter-out edges. The algorithm uses

18

a worklist to determine same-level realizable paths. Intuitively, a same-level realizable path obeys
the call-return structure of procedure calls, and it starts and ends at the same level (i.e., in the same
procedure). Same-level realizable paths between formal-in and formal-out vertices of a procedure
P induce summary edges between the corresponding actual-in and actual-out vertices for any call
to P . The algorithm starts by asserting that a same-level realizable path of length zero exists from
any formal-out vertex to itself. A worklist is used to select a path, and extend it by adding an
edge to its beginning. Reps et al. [67] also present a demand version of their algorithm, which
incrementally determines the summary edges of an SDG.

Lakhotia [69] presents an algorithm for computing interprocedural slices that is also based on
SDGs. This algorithm computes slices that are identical to the slices computed by the Horwitz-
Reps-Binkley algorithm. Associated with every SDG vertex v is a three-valued tag; possible values
for this tag are: “�” indicating that v has not been visited, “�” indicating that v has been visited,
and all vertices from which v can be reached should be visited, and “�” indicating that v has been
visited, and some of the vertices from which v can be reached should be visited. More precisely,
an edge from an entry vertex to a call vertex should only be traversed if the call vertex is labeled
�. A worklist algorithm is used to visit all vertices labeled � before visiting any vertex labeled
�. When this process ends, vertices labeled either � or � are in the slice. Lakhotia’s algorithm
traverses performs a single pass through the SDG. However, unlike the Horwitz-Reps-Binkley
algorithm, the value of a tag may change twice. Therefore it is unclear if Lakhotia’s algorithm is
really an improvement over the Horwitz-Reps-Binkley two-pass traversal algorithm.

The dependence graph model of Jackson and Rollins [32] (see Section 3.1.3) is “modular”,
in the sense that a single box is used for each procedure call. Instead of linking the individual
dependence graphs for the procedures of the program, Jackson and Rollins represent procedure
calls in a more abstract fashion: the internal dependence edges inside a procedure’s box effectively
correspond to the summary edges of Horwitz et al. [36, 63]. Unlike the previously discussed
methods, this algorithm side-steps the calling context problem by only extending slices to called
procedures, and not to calling procedures (unless explicitly requested by the user). Here, ‘ex-
tending a slice to a called procedure’ involves slicing the (separate) dependence graph for that
procedure with respect to the appropriate ports of its exit node (i.e., corresponding to the ports at
the point of call that occur in the slice).

Whereas for simple statements the internal dependence edges between ports of the associated
box in the dependence graph can be computed in a simple syntax-directed manner, a more elaborate
scheme is required for procedures. In the absence of recursion, the internal summary dependence
edges for a procedure are derived from the dependences inside and between the boxes for the
statements that constitute the procedure body. For recursive procedures, Jackson and Rollins
briefly discuss a simple iterative scheme for determining internal dependence edges, and state that
their algorithm is essentially an adaptation of the solution presented by Ernst [50] (see Section 6).
The essence of their scheme is that the internal dependence edges for non-recursive calls are
determined in the manner sketched above, and that there are initially no internal dependence edges
for calls in a recursive cycle. In each subsequent step, the transitive dependences between the
input parameters and the output parameters of a recursive procedure are recomputed by slicing
in a graph that contains the summary edges determined in the previous cycle. Then, summary
edges are added to the graph for those dependences that did not occur in the previous cycle. This
iteration process terminates when no more additional transitive dependences can be found.

19

3.3 Unstructured control flow

3.3.1 Dataflow equations

Lyle [56] reports that (his version of) Weiser’s algorithm for static slicing yields incorrect slices in
the presence of unstructured control flow: the behavior of the slice is not necessarily a projection of
the behavior of the program. He presents a conservative solution for dealing with goto statements:
any goto that has a non-empty set of relevant variables associated with it is included in the slice.

Gallagher [70] and Gallagher and Lyle [27] also use a variation of Weiser’s method. A goto
statement is included in the slice if it jumps to a label of an included statement12. Agrawal [47]
shows that this algorithm does not produce correct slices in all cases.

Jiang et al. [59] extend Weiser’s slicing method to C programs with unstructured control flow.
They introduce a number of additional rules to “collect” the unstructured control flow statements
such as goto, break, and continue that are part of the slice. Unfortunately, no formal justification
is given for the treatment of unstructured control flow constructs in [59]. Agrawal [47] shows that
this algorithm may also produce incorrect slices.

3.3.2 Dependence graphs

Ball and Horwitz [45, 46] and Choi and Ferrante [48] discovered independently that conventional
PDG-based slicing algorithms produce incorrect results in the presence of unstructured control
flow: slices may compute values at the criterion that differ from what the original program
does. These problems are due to the fact that the algorithms do not determine correctly when
unconditional jumps such as break, goto, and continue statements are required in a slice.

As an example, Figure 14 (a) shows a variant of our example program, which uses a goto
statement. Figure 14 (b) shows the PDG for this program. The vertices that have a transitive
dependence on statement write(product) are highlighted. Figure 14 (c) shows a textual
representation of the program thus obtained. Clearly, this “slice” is incorrect because it does not
contain the goto statement, causing non-termination. In fact, the previously described PDG-based
algorithms will only include a goto if it is the slicing criterion itself, because no statement is either
data or control dependent on a goto.

The solution of [45, 46] and the first solution presented in [48] are remarkably similar:
unconditional jumps are regarded as pseudo-predicate vertices where the “true” branch consists
of the statement that is being jumped to, and the “false” branch of the textually next statement.
Correspondingly, there are two outgoing edges in the augmented control flow graph (ACFG).
Only one of these edges can actually be traversed during execution; the other outgoing edge is
“non-executable”. In constructing the (augmented) PDG, data dependences are computed using
the (original) CFG, and control dependences are computed using the ACFG. Slicing is defined in
the usual way, as a graph reachability problem. Labels pertaining to statements excluded from the
slice are moved to the closest post-dominating statement that occurs in the slice.

The main difference between the approach by Ball and Horwitz and the first approach of
Choi and Ferrante is that the latter use a slightly more limited example language: conditional and
unconditional goto’s are present, but no structured control flow constructs. Although Choi and
Ferrante argue that these constructs can be transformed into conditional and unconditional goto’s,

12Actually, this is a slight simplification. Each basic block is partitioned into labeled blocks; a labeled block is
a subsequence of the statements in a basic block starting with a labeled statement, and containing no other labeled
statements. A goto is included in the slice if it jumps to a label for which there is some included statement in its block.

20

read(n);
i := 1;
sum := 0;
product := 1;
while true do
begin

if (i > n) then
goto L;

sum := sum + i;
product := product * i;
i := i + 1

end;
L: write(sum);
write(product)

read(n);
i := 1;

product := 1;
while true do
begin

if (i > n) then
;

product := product * i;
i := i + 1

end;

write(product)

read(n);
i := 1;

product := 1;
while true do
begin

if (i > n) then
goto L;

product := product * i;
i := i + 1

end;
L:
write(product)

(a) (c) (e)

product*i

Entry

read(n) i := 1 sum := 0 product := 1 while(true) write(sum) write(product)

if (i > n) sum+i i := i +1

goto L

sum := product:=

(b)

sum+i

Entry

read(n) i := 1 sum := 0 product := 1 while(true) write(sum) write(product)

if (i > n)

goto L

i := i +1product:=
product*i

sum :=

(d)

Figure 14: (a) Program with unstructured control flow, (b) PDG for program of (a), (c) incorrect
slice w.r.t. statement write(product), (d) Augmented PDG for program of (a), (e) correct slice w.r.t.
statement write(product).

21

Ball and Horwitz show that, for certain cases, this results in overly large slices. Both groups
present a formal proof that their algorithms compute correct slices.

Figure 14 (d) shows the augmented PDG for the program of Figure 14 (a); vertices from which
the vertex labeled write(product) can be reached are indicated by shading. The (correct)
slice corresponding to these vertices is shown in Figure 14 (e).

Choi and Ferrante distinguish two disadvantages of the slicing approach based on augmented
PDGs. First, APDGs require more space than conventional PDGs, and their construction takes
more time. Second, non-executable control dependence edges give rise to spurious dependences
in some cases. In their second approach, Choi and Ferrante utilize the “classical” PDG. As a
first approximation, the standard algorithm for computing slices is used, which by itself produces
incorrect results in the presence of unstructured control flow. The basic idea is that for each
statement that is not in the slice, a new goto to its immediate post-dominator is added. In a
separate phase, redundant cascaded goto statements are removed. The second approach has the
advantage of computing smaller slices than the first. A disadvantage of it, however, is that slices
may include goto statements that do not occur in the original program.

Yet another PDG-based method for slicing programs with unstructured control flow was
recently proposed by Agrawal [47]. Unlike the methods by Ball and Horwitz [45, 46] and Choi
and Ferrante [48], Agrawal uses unmodified PDGs. He observes that a conditional jump statement
of the form if P then goto L must be included in the slice if predicate P is in the slice because
another statement in the slice is control dependent on it. The terminology “conventional slicing
algorithm” is adopted to refer to the standard PDG-based slicing method, with the above extension
to conditional jump statements.

Agrawal’s key observation is that an unconditional jump statement J should be included in
the slice if and only if the immediate postdominator of J that is included in the slice differs
from the immediate lexical successor of J that is included in the slice. Here, a statement S� is a
lexical successor of a statement S if S textually precedes S � in the program13. The statements on
which the newly added statement is transitively dependent must also be added to the slice. The
motivation for this approach can be understood by considering a sequence of statements S1;S2;S3

where S1 and S3 are in the slice, and where S2 contains an unconditional jump statement to a
statement that does not have S3 as its lexical successor. Suppose that S2 were not included in
the slice. Then the flow of control in the slice would pass unconditionally from S1 to S3, though
in the original program this need not always be the case, because the jump might transfer the
control elsewhere. Therefore the jump statement must be included, together with all statements it
depends upon. Agrawal’s algorithm traverses the postdominator tree of a program in pre-order,
and considers jump statements for inclusion in this order. The algorithm iterates until no jump
statements can be added; this is necessary because adding a jump (and the statements it depends
upon) may change the lexical successors and postdominators in the slice of other jump statements,
which may therefore need to be included as well. Although no proof is stated, Agrawal claims
that his algorithm computes correct slices identical to those computed by the Ball-Horwitz and
Choi-Ferrante algorithms.

Agrawal’s algorithm [47] may be simplified significantly if the only type of jump that occurs
in a program is a structured jump, i.e., a jump to a lexical successor. C break, continue, and
return statements are all structured jumps. First, only a single traversal of the post-dominator
tree is required. Second, jump statements have to be added only if they are control dependent on

13As Agrawal observes, this notion is equivalent to the non-executable edges in the augmented control flow graphs
used by Ball and Horwitz, and Choi and Ferrante.

22

a predicate that is in the slice. In this case, the statements they are dependent upon are already
included in the slice. For programs with structured jumps, the algorithm can be further simplified
to a conservative algorithm by including in the slice all jump statements that are control dependent
on a predicate that is in the slice.

Agrawal’s algorithm will include the goto statement of the example program of Figure 14 (a)
because it is control dependent on the (included) predicate of the if statement.

3.4 Composite data types and pointers

Lyle [56] proposes a conservative solution to the problem of static slicing in the presence of arrays.
Essentially, any update to an element of an array is regarded as an update and a reference of the
entire array.

The PDG variant of Ottenstein and Ottenstein [4] contains a vertex for each sub-expression;
special select and update operators serve to access elements of an array.

In the presence of pointers (and procedures), situations may occur where two or more vari-
ables refer to the same memory location—a phenomenon commonly called aliasing. Aliasing
complicates the computation of slices because the notion of flow dependence depends on which
variables are (potential) aliases. Even in the intraprocedural case, the problem of determining
potential aliases in the presence of multiple-level pointers is anNP-hard problem [51]. However,
slices may be computed using conservative approximations of data dependences that are based
on approximate alias information. Conservative algorithms for determining potential aliases were
presented by Landi and Ryder [52], and Choi, Burke, and Carini [71].

Horwitz, Pfeiffer, and Reps [72] present a slightly different approach for computing flow
dependences in the presence of pointers. Instead of defining (approximate) flow dependences in
terms of definitions and uses of variables that are potentially aliased, the notion of flow dependence
is defined in terms of potential definitions and uses of abstract memory locations. An algorithm is
presented that computes approximations of the memory layouts that may occur at each program
point during execution.

The PDG-based static slicing algorithm proposed by Agrawal, DeMillo and Spafford [73]
implements a similar idea to deal with both composite variables and pointers. Their solution
consists of determining reaching definitions for a scalar variable v at node n in the flowgraph
by finding all paths from nodes corresponding to a definition of v to n that do not contain
other definitions of v. When composite data types and pointers are considered, definitions
involve l-valued expressions rather than variables. An l-valued expression is any expression
that may occur as the left-hand side of an assignment. Agrawal et al. present a new definition of
reaching definitions that is based on the layout of memory locations potentially denoted by l-valued
expressions. Memory locations are regarded as abstract quantities (e.g., the array a corresponds to
“locations” a�1�, a�2�,). Whereas a definition for a scalar variable either does or does not reach
a use, the situation becomes more complex when composite data types and pointers are allowed.
For a def-expression e1 and a use-expression e2, the following situations may occur:

Complete Intersection The memory locations corresponding to e1 are a superset of the memory
locations corresponding to e2. An example is the case where e1 defines the whole of record
b, and e2 is a use of bf .

Maybe Intersection It cannot be determined statically whether or not the memory locations of
a e1 coincide with those of e2. This situation occurs when e1 is an assignment to array

23

(1) p = &x;
(2) *p = 2;
(3) q = p;
(4) write(*q)

DEF REF R0
C

1 f p g f (-1)x g �
2 f (1)p g f p g f p, (1)q g
3 f q g f p g f p, (1)q g
4 � f q, (1)q g f q, (1)q g

(1) p = &x;
(2) ;
(3) q = p;
(4)

(a) (b) (c)

Figure 15: (a) Example program. (b) Defined variables, used variables, and relevant variables for this
program. (c) Incorrect slice w.r.t. criterion C � �4� f q, (1)q g�.

element a�i� and e2 is a use of array element a�j�. Pointer dereferencing may also give rise
to Maybe Intersections.

Partial Intersection The memory locations of e1 are a subset of the memory locations of e2.
This occurs for example when some array a is used at e2, and some element a�i� of a is
defined at e1.

Given these concepts, an extended reaching definition function is defined that traverses the flow-
graph until it finds Complete Intersections, makes worst-case assumptions in the case of Maybe
Intersections, and continues the search for the array or record parts that have not been defined yet
in the case of Partial Intersections.

Lyle and Binkley [74] present an approach for slicing in the presence of pointers that is based
on a variation of symbolic execution. Their algorithm consists of two phases. First, all CFG
nodes are determined that introduce addresses (either due to a use of the C ‘&’ operator, or due
to the dynamic allocation of a new object). These addresses are propagated through the CFG
yielding a set of address values for each pointer at each program point. A number of propagation
rules defines how addresses are propagated by assignments statements14. In the second phase, the
information collected in the first phase is used to determine which statements should be included
in a slice. This second phase is essentially a generalization of Lyle’s slicing algorithm [56].

Jiang, Zhou and Robson [59] present an algorithm for slicing C programs with pointers and
arrays that is based on Weihl’s notion of dummy variables [75]. The basic idea is that for each
pointer p, the dummy variable �1�p denotes the value pointed to by p, and for each variable x,
�1�x denotes the address of q. Jiang et al. define data dependences in the usual way, in terms of
definitions and uses of (dummy) variables. Unfortunately, this approach appears to be flawed15.
Figure 15 shows an example program, the DEF, REF, and R0

C sets for each statement, and the
incorrect slice computed for criterion C � �4� fq, (1)qg�. The second statement is incorrectly
omitted because it does not define any variable that is relevant at statement 3.

3.5 Concurrency

Cheng [76] considers static slicing of concurrent programs using dependence graphs. He gen-
eralizes the notions of a CFG and a PDG to a nondeterministic parallel control flow net, and a
program dependence net (PDN), respectively. In addition to usual PDG edges, PDNs also contain
edges for selection dependences, synchronization dependences, and communication dependences.

14In their definitions, Lyle and Binkley only address straight-line code, and argue that control-dependence issues are
“orthogonal” to the data-dependence issues raised by pointers.

15The counterexample of Figure 15 was provided by Susan Horwitz.

24

Selection dependence is similar to control dependence but involves nondeterministic selection
statements, such as the ALT statement of Occam-2. Synchronization dependence reflects the fact
that the start or termination of the execution of a statement depends on the start or termination of
the execution of another statement. Communication dependence corresponds to situations where
a value computed at one program point influences the value computed at another point through in-
terprocess communication. Static slices are computed by solving a reachability problem in a PDN.
Unfortunately, Cheng does not clearly state the semantics of synchronization and communication
dependence, nor does he state or prove any property of the slices computed by his algorithm.

An interesting point is that Cheng uses a notion of weak control dependence [77] for the
construction of PDNs. The set of weak control dependences is a superset of the set of control
dependences, the difference being the fact that weak control dependences exist between the control
predicate of a loop and the statements that follow it. For example, the statements on lines 9 and 10
of the program of Figure 1 (a) are weakly (but not strongly) control dependent on the control
predicate on line 5.

3.6 Comparison

3.6.1 Overview

In this section, the static slicing methods that were presented earlier are compared and classified.
The section is organized as follows: Section 3.6.1 summarizes the problems that are addressed
in the literature. Sections 3.6.2 and 3.6.3 compare the accuracy and efficiency of slicing methods
that address the same problem, respectively. Finally, in Section 3.6.4 possibilities for combining
algorithms that deal with different problems are discussed.

Table 2 provides an overview of the most significant slicing algorithms that can be found in the
literature. For each paper, the table lists the computation method used and indicates: (i) whether
or not interprocedural slices can be computed, (ii) the control flow constructs under consideration,
(iii) the data types under consideration, and (iv) whether or not concurrency is considered. It is
important to realize that the entries of Table 2 only indicate the problems that have been addressed;
the table does not indicate the “quality” of the solutions (with the exception that incorrect solutions
are indicated by footnotes). Moreover, the table also does not indicate which algorithms may be
combined. For example, the Horwitz-Reps-Binkley interprocedural slicing algorithm [36] could
in principle be combined with any of the dependence graph based slicing methods for dealing
with unstructured control flow [46, 47, 48]. Possibilities for such combinations are investigated to
some extent in Section 3.6.4. The work by Ernst [50] and by Field et al. [17, 18, 79] that occurs in
Table 2 relies on substantially different techniques than those used for the static slicing algorithms
discussed previously, and will therefore be studied separately in Section 6.

Kamkar [44] distinguishes between methods for computing slices that are executable programs,
and those for computing slices that consist of a set of “relevant” statements. We agree with the
observation by Horwitz et al. [36], that for static slicing of single-procedure programs this is merely
a matter of presentation. However, for multi-procedure programs, the distinction is significant, as
was remarked in Section 3.2.3. Nevertheless, we believe that the distinction between executable
and non-executable interprocedural slices can be ignored in this case as well, because the problems
are strongly related: Binkley [68] describes how precise executable interprocedural static slices
can be obtained from the non-executable interprocedural slices computed by the algorithm of
Horwitz et al. [36].

A final remark here concerns I/O statements. The slices computed by Weiser’s algorithm [3]

25

a b c

M
et

ho
d

C
om

pu
ta

tio
n

In
te

rp
ro

ce
du

ra
l

So
lu

tio
n

C
on

tr
ol

Fl
ow

D
at

a

T
yp

es

C
on

cu
rr

en
cy

Weiser [3, 55] D yes S S no
Lyle [56] D no A S, A no
Gallagher, Lyle [70, 27] D no Ad S no
Jiang et al. [59] D yes Ad S, A, Pe no
Lyle, Binkley [74] D no Sf S, P no
Hausler [57] F no S S no
Bergeretti, Carré [7] I yesg S S no
Ottenstein [4] G no S S, A no
Horwitz et al. [26, 42, 43] G no S S no
Horwitz et al. [36] G yes S S no
Binkley [64] G yesh S S no
Binkley [78] G yesi S S no
Jackson, Rollins [32, 33] G yes S S no
Reps et al. [67, 63] G yes S S no
Lakhotia [69] G yes S S no
Agrawal et al. [73] G no S S, A, P no
Ball, Horwitz [45, 46] G no A S no
Choi, Ferrante [48] G no A S no
Agrawal [47] G no A S no
Cheng [76] G no S S yes
Ernst [50] O yes A S, A, P no
Field et al. [17, 18, 79] R no S S, P no

aD = dataflow equations, F = functional/denotational semantics, I = information-flow relations, G =
reachability in a dependence graph, O = dependence graphs in combination with optimization techniques
(see Section 6). R = dependence tracking in term graph rewriting systems (see Section 6).
bS = structured, A = arbitrary.
cS = scalar variables, A = arrays/records, P = pointers.
dSolution incorrect (see [47]).
eSolution incorrect (see Section 3.4).
fOnly straight-line code is considered.
gNon-recursive procedures only.
hTakes parameter aliasing into account.
iProduces slices that are executable programs.

Table 2: Overview of static slicing methods.

26

and the algorithm by Bergeretti and Carré [7] never contain output statements because: (i) the
DEF set of an output statement is empty so that no other statement is data dependent on it, and
(ii) no statement is control dependent on an output statement. Horwitz and Reps [40] suggest a
way for making an output value dependent on all previous output values by treating a statement
write(v) as an assignment output := output || v, where output is a string-valued
variable containing all output of the program, and ‘||’ denotes string concatenation. Output
statements can be included in the slice by including output in the set of variables in the criterion.

3.6.2 Accuracy

Although the problem of determining statement-minimal slices is undecidable in general, some
algorithms compute better approximations of statement-minimal slices than other algorithms. For
convenience, we will call an algorithm “inaccurate” if another algorithm computes a smaller slice
for the same criterion.

An issue that at first glance seems to complicate the comparison of the static slicing methods
discussed previously is the fact that some methods allow more general slicing criteria than others.
For slicing methods based on dataflow equations and information-flow relations, a slicing criterion
consists of a pair �s� V �, where s is a statement and V an arbitrary set of variables. In contrast,
with the exception of the “modular” PDGs of Jackson and Rollins [32], the slicing criteria of
PDG-based slicing methods effectively correspond to a pair �s�VARS�s��, where s is a statement
and VARS�s� the set of all variables defined or used at s.

However, a PDG-based slicing method can compute a slice with respect to a criterion �s� V �
for arbitrary V by performing the following three steps. First, the CFG node n corresponding to
PDG vertex s is determined. Second, the set of CFG nodesN corresponding to all definitions that
reach a variable in V at node n are determined. Third, the set of PDG vertices S corresponding
to the set of CFG nodes N is determined; the desired slice consists of all vertices from which
a vertex in S can be reached. Alternatively, one could insert a statement v:�e at the point of
interest, where v is some dummy variable that did not occur previously in the program, and e is
some expression containing all variables in V , re-construct the PDG, and slice with respect to the
newly added statement. Having dealt with this issue, some conclusions regarding the accuracy of
static slicing methods can now be stated:

basic algorithms. For intraprocedural static slicing, the accuracy of methods based on dataflow
equations [3] (see Section 3.1.1) information-flow relations [7] (see Section 3.1.2), and PDGs [4]
(see Section 3.1.3) is essentially the same, although the presentation of the computed slices differs:
Weiser defines his slice to be an executable program, whereas in the other two methods slices are
defined as a subset of statements of the original program.

procedures. Weiser’s interprocedural static slicing algorithm [3] is inaccurate for two reasons,
which can be summarized as follows. First, the interprocedural summary information used
to approximate the effect of a procedure call establishes relations between the set of all input
parameters, and the set of all output parameters; by contrast, the approaches of [7, 36, 61, 67, 63]
determine for each output parameter precisely which input parameters it depends upon. Second,
the algorithm fails to take the call-return structure of interprocedural execution paths into account.
These problems are addressed in detail in Section 3.2.1.

The algorithm by Bergeretti and Carré [7] does not compute truly interprocedural slices
because only the main program is being sliced. Moreover, the it is not capable of handling

27

recursive programs. Bergeretti-Carré slices are accurate in the sense that: (i) exact dependences
between input and output parameters are used, and (ii) the calling-context problem does not occur.

The solutions of [61, 36, 67, 63] compute accurate interprocedural static slices up to the
assumption of path feasibility, and are capable of handling recursive programs (see Sections 3.2.2
and 3.2.3). Ernst [50] and Jackson and Rollins [32] also present a solution for interprocedural
static slicing that is accurate up to the assumption of path feasibility, but do not present of proof
of correctness.

Binkley extended the Horwitz-Reps-Binkley algorithm [36] in two respects: a solution for
interprocedural static slicing in the presence of parameter aliasing [64], and a solution for obtaining
executable interprocedural static slices [68].

unstructured control flow. Lyle’s method for computing static slices in the presence of un-
structured control flow is very conservative (see Section 3.3.1). Agrawal [47] has shown that the
solutions proposed by Gallagher and Lyle [70, 27] and by Jiang et al. are incorrect [59]. Precise
solutions for static slicing in the presence of unstructured control flow have been proposed by
Ball and Horwitz [45, 46], Choi and Ferrante [48], and Agrawal [47] (see Section 3.3.2). It is our
conjecture that these three approaches are equally accurate.

composite variables and pointers. A number of solutions for slicing in the presence of compos-
ite variables and pointers were discussed in Section 3.4. Lyle [56] presented a very conservative
algorithm for static slicing in the presence of arrays. The approach by Jiang et al. [59] for slicing
in the presence of arrays and pointers was shown to be incorrect. Lyle and Binkley [74] present
an approach for computing highly accurate slices in the presence of pointers, but only consider
straight-line code. Agrawal et al. propose an algorithm for static slicing in the presence of arrays
and pointers that is more accurate than Lyle’s algorithm [56].

concurrency. The only approach for static slicing of concurrent programs was proposed by
Cheng (see Section 3.5).

3.6.3 Efficiency

Below, the efficiency of the static slicing methods that were studied earlier will be addressed:

basic algorithms. Weiser’s algorithm for intraprocedural static slicing based on dataflow equa-
tions [3] can determine a slice in O�v� �n� e�� time16, where v is the number of variables in the
program, n the number of vertices in the CFG, and e the number of edges in the CFG.

Bergeretti and Carré [7] report that the �S relation for a statement S can be computed in
O�v2 � n�. From �S , the slices for all variables at S can be obtained in constant time.

Construction of a PDG essentially involves computing all data dependences and control de-
pendences in a program. For structured programs, control dependences can be determined in a
syntax-directed fashion, in O�n�. In the presence of unstructured control flow, the control depen-
dences of a single-procedure program can be computed in O�e� in practice [80, 81]. Computing
data dependences essentially corresponds to determining the reaching definitions for each use. For

16Weiser [3] states a bound ofO�n�e� log�e��; this is a bound on the number of “bit-vector” steps performed, where
the length of each bit-vector is O�v�. However, present-day techniques permit computation of the same information in
O�v � �n� e�� time.

28

scalar variables, this can be accomplished in O�e� d�, where d is the number of definitions in the
program (see, e.g., [67]). From d � n it follows that a PDG can be constructed in O�e� n� time.

One of the self-evident advantages of PDG-based slicing methods is that, once the PDG has
been computed, slices can be extracted in linear time, O�V �E�, where V and E are the number
of vertices and edges in the slice, respectively. This is especially useful if several slices of the
same program are required. In the worst case, when the slice consists of the entire program, V and
E are equal to the number of vertices and edges of the PDG, respectively. In certain cases, there
can be a quadratic blowup in the number of flow dependence edges of a PDG, e.g., E � O�V 2�.
We are not aware of any slicing algorithms that use more efficient program representations such as
the SSA form [82]. However, Yang et al. [83] use Program Representation Graphs as a basis for
a program integration algorithm that accommodates semantics-preserving transformations. This
algorithm is based on techniques similar to slicing.

procedures. In the discussion below, Visible denotes the maximal number of parameters and
variables that are visible in the scope of any procedure, and Params denotes the maximum number
of formal-in vertices in any procedure dependence graph of the SDG. Moreover, TotalSites is the
total number of call sites in the program; Np and Ep denote the number of vertices and edges in
the CFG of procedure p, and Sitesp the number of call sites in procedure p.

Weiser does not state an estimate of the complexity of his interprocedural slicing algorithm [3].
However, one can observe that for an initial criterion C , the set of criteria in (UP � DOWN)*(C)
contains at most O�Visible � Sitesp� criteria in each procedure p. An intraprocedural slice of
procedure p takes time O�Visible � �Np � Ep��. Furthermore, computation of interprocedural
summary information can be done in O�Globals�TotalSites� time [84]. Therefore, the following
expression constitutes an upper bound for the time required to slice the entire program:

O�Globals� TotalSites � Visible2 � Σp�Sitesp � �Np �Ep���

The approach by Bergeretti and Carré requires that, in the worst case, the� relation is computed
for each procedure. Each call site is replaced by at most Visible assignments. Therefore, the cost
of slicing a procedure p is O�Visible2 � �n� Visible� Sitesp��, and the total cost of computing a
slice of the main program is:

O�Visible2 � Σp�n� Visible� Sitesp��

As was discussed in Section 3.2.1, the approach by Hwang, Du, and Chou may require time
exponential in the size of the program.

Construction of the individual procedure dependence graphs of an SDG takes timeO�Σp�Ep�
Np��. The Horwitz-Reps-Binkley algorithm for computing summary edges takes time:

O�TotalSites�EPDG � Params� TotalSites� Sites2 � Params4�

where Sites is the maximum number of call sites in any procedure, and EPDG is the maximum
number of control and data dependence edges in any procedure dependence graph. (for details,
see [36, 63]). The Reps-Horwitz-Sagiv-Rosay approach for computing summary edges requires

O�P �EPDG � Params � TotalSites� Params3�

time [63]. Here, P denotes the number of procedures in the program. Assuming that the number
of procedures P is usually much less than the number of procedure calls TotalSites, both terms of

29

the complexity measure of the Reps-Horwitz-Sagiv-Rosay approach are asymptotically smaller
than those of the Horwitz-Reps-Binkley algorithm.

Once an SDG has been constructed, a slice can be extracted from it (in two passes) inO�V�E�,
where V and E are the number of vertices and edges in the slice, respectively. In the worst case,
V and E are the number of vertices and edges in the SDG, respectively.

Binkley does not state a cost estimate of his algorithm for interprocedural slicing in the presence
of parameter aliasing [64]. The cost of his “extension” for deriving executable interprocedural
slices [68] from “non-executable” interprocedural slices is linear in the size of the SDG.

Jackson and Rollins [32], who use an adaptation of Ernst’s algorithm for determining summary
dependences (see Section 3.2.3) claim a bound of O�v � n2�, where v denotes the number of
variables, and n the number of ports in the dependence graph. Observe that each port is effectively
a pair �variable� statement�). In the approach by Jackson and Rollins, extraction of a slice is done
in a single traversal of the dependence graph, which requires O�V � E� time, where V and E

denote the number of vertices (i.e., ports) and edges in the slice.

unstructured control flow. Lyle [56] presented a conservative solution for dealing with un-
structured control flow. His algorithm is a slightly modified version of Weiser’s algorithm for
structured control flow [3], which requires O�v � �n� e�� time.

No complexity estimates are stated in [47, 46, 48]. However, the differences between these
algorithms and the “standard” PDG-based slicing algorithm are only minor: Ball and Horwitz [46]
and Choi and Ferrante [48] use a slightly different control dependence subgraph in conjunction
with the data dependence subgraph, and Agrawal [47] uses the standard PDG in conjunction with
a lexical successor tree that can be constructed in linear time, O�n�. Therefore it is to be expected
that the efficiency of these algorithms is roughly equivalent to that of the standard, PDG-based
algorithm discussed above.

composite variables and pointers. Lyle’s approach for slicing in the presence of arrays [56] has
the same complexity bound as Weiser’s algorithm for slicing in the presence of scalar variables,
because the worst-case length of reaching definitions paths remains the same.

The cost of constructing PDGs of programs with composite variables and pointers according
to the algorithm proposed by Agrawal et al. [73] is the same as that of constructing PDGs of
programs with scalar variables only. This is the case because the worst-case length of (potential)
reaching definitions paths remains the same, and determining Maybe Intersections and Partial
Intersections (see Section 3.4) can be done in constant time.

Lyle and Binkley do not state a cost estimate for their approach for slicing in the presence of
pointers [74].

It should be remarked here that more accurate static slices can be determined in the presence of
non-scalar variables if more advanced (but computationally expensive) data dependence analysis
were performed (see, e.g., [85, 86]).

concurrency. Cheng [76] doesn’t state any complexity estimate for determining selection, syn-
chronization, and communication dependence. The time required for extracting slices isO�V�E�,
where V and E denote the number of vertices and edges in the PDN, respectively.

30

Pr
oc

ed
ur

es

C
on

tr
ol

 F
lo

w

U
ns

tr
uc

tu
re

d

C
om

po
si

te

V
ar

ia
bl

es

C
on

cu
rr

en
cy

Dataflow Weiser [3, 55] Lyle [56] Lyle [56] —
Equations
Inf.-Flow Bergeretti, Carré [7] — — —
Relations

Horwitz et al. [36] Ball, Horwitz [45, 46] Agrawal et al.[73]a Cheng [76]
PDG-based Lakhotia [38] Choi, Ferrante [48]

Reps et al. [67, 63] Agrawal [47]
Binkley [68]

aAlgorithms for computing conservative approximations of data dependences in the presence of aliasing can be
used. See Section 3.4.

Table 3: Orthogonal dimensions of static slicing.

3.6.4 Combining static slicing algorithms

Table 3 highlights “orthogonal” dimensions of static slicing: dealing with procedures, unstructured
control flow, non-scalar variables, and concurrency. For each computation method, the table shows
which papers present a solution for these problems. In principle, solutions to different problems
could be combined if they appear in the same row of Table 3 (i.e., if they apply to the same
computation method).

4 Methods for dynamic slicing

4.1 Basic algorithms

In this section, we will study basic algorithms for dynamic slicing of structured, single-procedure
programs with scalar variables.

4.1.1 Dynamic flow concepts

Korel and Laski [9, 37] describe how dynamic slices can be computed. They formalize the
execution history of a program as a trajectory consisting of a sequence of “occurrences” of
statements and control predicates. Labels serve to distinguish between different occurrences of a
statement in the execution history. As an example, Figure 16 shows the trajectory for the program
of Figure 2 (a) for input n = 2.

A dynamic slicing criterion is specified as a triple �x� Iq� V � where x denotes the input of the
program, statement occurrence Iq is the qth element of the trajectory, and V is a subset of the

31

11 read(n)
22 i := 1
33 i <= n /* (1 <= 2) /*
44 (i mod 2 = 0) /* (1 mod 2 = 1) /*
65 x := 18
76 i := i + 1
37 i <= n /* (2 <= 2) /*
48 (i mod 2 = 0) /* (2 mod 2 = 0) /*
59 x := 17
710 i := i + 1
311 i <= n /* (3 <= 2) /*
812 write(x)

DU � f �11� 33�� �11� 37�� �11� 311��

�22� 33�� �22� 44�� �22� 76��
�76� 37�� �76� 48�� �76� 710��

�59� 812�� �710� 311� g

TC � f �33� 44�� �33� 65�� �33� 76��

�44� 65�� �37� 48�� �37� 59��

�37� 710�� �48� 59� g

IR � f �33� 37�� �33� 311�� �37� 33��

�37� 311�� �311� 33�� �311� 37��
�44� 48�� �48� 44�� �76� 710��

�710� 76� g

(a) (b)

Figure 16: (a) Trajectory for the example program of Figure 2 (a) for input n = 2. (b) Dynamic Flow
Concepts for this trajectory.

variables of the program17. Korel and Laski define a dynamic slice with respect to a criterion
�x� Iq� V � as an executable program S that is obtained from a program P by removing zero or
more statements. Three restrictions are imposed on S. First, when executed with input x, the
trajectory of S is identical to the trajectory of P from which all statement instances are removed
that correspond to statements that do not occur in S. Second, identical values are computed by the
program and its slice for all variables in V at the statement occurrence specified in the criterion.
Third, it is required that statement I corresponding to statement instance Iq specified in the slicing
criterion occurs in S. Korel and Laski observe that their notion of a dynamic slice has the property
that if a loop occurs in the slice, it is traversed the same number of times as in the original program.

In order to compute dynamic slices, Korel and Laski introduce three dynamic flow concepts
that formalize the dependences between occurrences of statements in a trajectory. The Definition-
Use (DU) relation associates a use of a variable with its last definition. Note that in a trajectory,
this definition is uniquely defined. The Test-Control (TC) relation associates the most recent
occurrence of a control predicate with the statement occurrences in the trajectory that are control
dependent upon it. This relation is defined in a syntax-directed manner, for structured program
constructs only. Occurrences of the same statement are related by the symmetric Identity (IR)
relation. Figure 16 (b) shows the dynamic flow concepts for the trajectory of Figure 16 (a).

Dynamic slices are computed in an iterative way, by determining successive sets Si of directly
and indirectly relevant statements. For a slicing criterion �x� Iq� V �, the initial approximation S0

contains the last definitions of the variables in V in the trajectory before statement instance Iq, as
well as the test actions in the trajectory on which Iq is control dependent. Approximation Si�1 is
defined as follows:

Si�1 � Si �Ai�1

where Ai�1 is defined as follows:

Ai�1 � fXp j Xp �� Si� �Xp� Y t� � �DU � TC � IR� for some Y t � Si� p
 q g

17Korel and Laski’s definition of a dynamic slicing criterion is somewhat inconsistent. It assumes that a trajectory
is available although the input x uniquely defines this. A self-contained and minimal definition of a dynamic slicing
criterion would consist of a triple �x� q� V � where q is the number of a statement occurrence in the trajectory induced
by input x.

32

11 read(n)
22 i := 1
33 i <= n
44 (i mod 2 = 0)
65 x := 18
76 i := i + 1
37 i <= n
88 write(x)

DU � f �11� 33�� �11� 37��

�22� 33�� �22� 44��

�22� 76�� �65� 88��
�76� 37� g

TC � f �33� 44�� �33� 65��

�33� 76�� �44� 65� g

IR � f �33� 37�� �37� 33� g

(a) (b)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

i := i + 1
end;
write(x)

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

end;
write(x)

(c) (d)

Figure 17: (a) Trajectory of the example program of Figure 2 (a) for input n = 1. (b) Dynamic flow
concepts for this trajectory. (c) Dynamic slice for criterion �n � 1� 88� x�. (d) Non-terminating slice with
respect to the same criterion obtained by ignoring the effect of the IR relation.

where q is the “label” of the statement occurrence specified in the slicing criterion. The dynamic
slice is easily obtained from the fixpoint SC of this process (as q is finite, this always exists): any
statement X for which an instance Xp occurs in SC will be in the slice. Furthermore, statement
I corresponding to criterion Iq is added to the slice.

As an example, the dynamic slice for the trajectory of Figure 16 and the criterion �n �
2� 812� fxg� is computed. Since the final statement is not control dependent on any other statement,
the initial approximation of the slice consists of the last definition of x: A0 � f 59 g. Subsequent
iterations will produceA1 � f 37� 48 g, A2 � f 76� 11� 33� 311� 44 g, and A3 � f 22� 710 g. From
this, it follows that:

SC � f 11� 22� 33� 44� 76� 37� 48� 59� 710� 311� 812 g

Thus, the dynamic slice with respect to criterion �n � 2� 812� f x g� includes every statement
except statement 5, corresponding to statement 65 in the trajectory. This slice was shown earlier
in Figure 2 (b).

The role of the IR relation calls for some clarification. Consider the trajectory of the example
program of Figure 2 (a) for input n = 1, shown in Figure 17 (a). The dynamic flow concepts for
this trajectory, and the slice with respect to criterion �n � 1� 88� f x g� are shown in Figure 17 (b)
and (c), respectively. Note that the slice thus obtained is a terminating program: once statement
instance 33 is included in the slice, the IR relation will cause the inclusion of 37, which in turn
would cause the inclusion of 76 via the DU relation. However, computing the slice without taking

33

(1) read(n);
(2) i := 1;
(3) while (i �� n) do

begin
(4) if (i mod 2 = 0) then
(5) x := 17

else
(6) x := 18;
(7) z := x;
(8) i := i + 1

end;
(9) write(z)

11 read(n)
22 i := 1
33 i <= n
44 (i mod 2 = 0)
65 x := 18
76 z := x
87 i := i + 1
38 i <= n
49 (i mod 2 = 0)
510 x := 17
711 z := x
812 i := i + 1
313 i <= n
914 write(z)

(a) (b)

Figure 18: (a) Example program. (b) Trajectory for input n = 2.

(1) read(n);
(2) x := 0;
(3) i := x;
(4) while (i � n) do

begin
(5) x := 1;
(6) y := 10 / x;
(7) i := i + 1

end

11 read(n)
22 x := 0
33 i := x
44 i < n
55 x := 1
66 y := 10 / x
77 i := i + 1
48 i < n
59 x := 1
610 y := 10 / x
711 i := i + 1
412 i < n

read(n);
x := 0;
i := x;
while (i � n) do
begin

;
y := 10 / x;
i := i + 1

end

Figure 19: (a) Example program. (b) Trajectory for input n = 2. (c) Dynamic slice w.r.t. criterion
�n = 2� 610� f i g�, which produces a run-time error when executed for the same input.

the IR relation into account would yield the non-terminating program of Figure 17 (d). The reason
for this phenomenon (and thus for introducing the IR relation) is that the DU and TC relations only
traverse the trajectory in the backward direction. The purpose of the IR relation is to traverse the
trajectory in both directions, and to include all statements and control predicates that are necessary
to ensure termination of loops in the slice. Unfortunately, no proof is provided that this is always
sufficient.

Unfortunately, traversing the IR relation in the “backward” direction causes inclusion of
statements that are not necessary to preserve termination. For example, Figure 18 (a) shows a
slightly modified version of the program of Figure 2 (a). Figure 18 (b) shows the trajectory for this
program. From this trajectory, it follows that �76� 711� � IR, �65� 76� � DU, and �510� 711� � DU.
Therefore, both statements (5) and (6) will be included in the slice w.r.t. criterion �n � 2� 914� fzg�,
although statement (6) is neither needed to compute the final value of z nor to preserve termination.

We conjecture that restricting the IR relation to statement instances that correspond to control
predicates in the program would yield smaller slices. Alternatively, it would be interesting
to investigate if using a dynamic variation of Podgurski and Clarke’s notion of weak control
dependence [77] could be used instead of the IR relation.

34

�� � �
�� � �
�� � ID

�S1;S2 � �S1 � �S1
� �S2

�S1;S2
� �S1

� �S2
� �S2

�S1;S2
� �S1

� �S2

�v:�e � VARS�e�� f e g
�v:�e � f �e� v� g
�v:�e � �VARS�e�� f v g� � �ID � �v� v��

�if e then S1 else S2 �

�
�VARS�e�� f e g� � �S1

�VARS�e�� f e g� � �S2

if e evaluates to true
if e evaluates to false

�if e then S1 else S2
�

�
�f e g � DEFS�S1�� � �S1

�f e g � DEFS�S2�� � �S2

if e evaluates to true
if e evaluates to false

�if e then S1 else S2
�

�
�VARS�e�� DEFS�S1�� � �S1

�VARS�e�� DEFS�S2�� � �S2

if e evaluates to true
if e evaluates to false

Figure 20: Definition of dynamic dependence relations.

We conclude the discussion of the Korel-Laski algorithm by reporting a minor problem18.
Consider the example program of Figure 19 (a). In Figure 19 (b) the trajectory of that program
for input n = 2 is shown, and Figure 19 (c) shows the dynamic slice of this program with respect
to criterion �n = 2� 610� f i g�. Observe that the statement x := 1 is omitted in the slice, so
that the slice will suffer from a division-by-zero error when executed for input n = 2. This
problem is due to the fact that the slicing criterion Iq is added to the final approximation SC of the
slice, without necessarily adding all statements it is dependent upon. It seems however, that this
problem can be resolved by simply initializing S0 with the slicing criterion Iq, rather than the last
definitions of the variables in V .

4.1.2 Dynamic dependence relations

Gopal [49] describes an approach where dynamic dependence relations are used to compute
dynamic slices. He introduces dynamic versions of Bergeretti and Carré’s information-flow
relations19 �S , �S , and �S (see Section 3.1.2). The �S relation contains all pairs �v� e� such that
statement e depends on the input value of v when program S is executed. Relation �S contains all
pairs �e� v� such that the output value of v depends on the execution of statement e. A pair �v� v��
is in relation �S if the output value of v� depends on the input value of v. In these definitions, it is
presumed that S is executed for some fixed input.

For empty statements, assignments, and statement sequences Gopal’s dependence relations
are exactly the same as for the static case. The (static) information-flow relations for a conditional
statement are derived from the statement itself, and from the statements that constitute its branches.
For dynamic dependence relations, however, only the dependences that arise in the branch that
is actually executed are taken into account. As in [7], the dependence relation for a while
statement (omitted here) is expressed in terms of dependence relations for nested conditionals
with equivalent behavior. However, whereas in the static case loops are effectively replaced by
their infinite unwindings, the dynamic case only requires that a loop be unwound k times, where
k is the number of times the loop executes. The resulting definitions are very convoluted because

18This quirk was originally reported by one of the anonymous referees of this paper.
19Gopal uses the notation sSv , vSv , and vSs . In order to avoid confusion and to make the relation with Bergeretti and

Carré’s work explicit (see Section 3.1.2), we will use �S , �S , and �S instead.

35

EXPRESSION #a AFFECTED VARIABLES

1 f i� n� x g
2 f i� x g
3 f i� x g
4 f i� x g
5 f x g
6 �

7 f i� x g
8 �

aExpressions are indicated by the line numbers in Figure 2.

Figure 21: The � relation for the example program of Figure 2 (a) and input n = 2.

the dependence relations for the body of the loop may differ in each iteration. Hence, a simple
transitive closure operation, as was used in the static case, is insufficient.

Figure 20 summarizes Gopal’s dynamic dependence relations. Here, DEFS�S� denotes the set
of variables that is actually modified by executing statement S. Note that this definition of DEFS

is “dynamic” in the sense that it takes into account which branch of an if statement is executed.
Using these relations, a dynamic slice w.r.t. the final value of a variable v is defined as:

�Pv � fe j �e� v� � �P g

Figure 21 (a) shows the information-flow relation � for the (entire) program of Figure 2 (a)20.
From this relation it follows that the set of expressions that affect the value of x at the end of the
program for input n = 2 are f 1� 2� 3� 4� 5� 7 g. The corresponding dynamic slice is almost
identical to the one shown in Figure 1 (b), the only difference being the fact that Gopal’s algorithm
excludes the final statement write(x) on line 8.

For certain cases, Gopal’s algorithm may compute a non-terminating slice of a terminating
program. Figure 22 (a) shows the slice for the program of Figure 2 and input n = 1 as computed
according to Gopal’s algorithm.

An advantage of using dependence relations is that, for certain cases, smaller slices are
computed than by Korel and Laski’s algorithm. For example, Figure 22 (b) shows the slice
with respect to the final value of z for the example program of Figure 18 (a), for input n = 2.
Observe that the assignment x := 18, which occurs in the slice computed by the algorithm of
Section 4.1.1, is not included in Gopal’s slice.

4.1.3 Dependence graphs

Miller and Choi [11] were the first to introduce a dynamic variation of the PDG, called the
dynamic program dependence graph. These graphs are used by their parallel program debugger to
perform flowback analysis [10] and are constructed incrementally, on demand. Prior to execution,
a (variation of a) static PDG is constructed, and the object code of the program is augmented
with code that generates a log file. In addition, an emulation package is generated. Programs
are partitioned into so-called emulation blocks (typically, a subroutine). During debugging,
the debugger uses the log file, the static PDG, and the emulation package to re-execute an

20Gopal does not define information-flow relations for I/O statements. For the purposes of this example, it is
assumed that the statement read(n) can be treated as an assignment n := SomeConstant, and that the statements
write(sum) and write(product) should be treated as empty statements.

36

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then

else
x := 18;

end;

read(n);
i := 1;
while (i �� n) do
begin

if (i mod 2 = 0) then
x := 17

else
;

z := x;
i := i + 1

end;

(a) (b)

Figure 22: (a) Non-terminating slice computed for example program of Figure 2 (a) with respect to the
final value of x, for input n = 1. (b) Slice for the example program of Figure 18 (a) with respect to the
final value of x, for input n = 2.

emulation block, and obtain the information necessary to construct the part of the dynamic PDG
corresponding to that block. In case the user wants to perform flowback analysis to parts of the
graph that have not been constructed yet, more emulation blocks are re-executed.

Agrawal and Horgan [35] develop an approach for using dependence graphs to compute
dynamic slices. Their first two algorithms for computing dynamic slices are inaccurate, but useful
for understanding their final approach. The initial approach uses the PDG as it was discussed in
Section 3.1.321, and marks the vertices that are executed for a given test set. A dynamic slice is
determined by computing a static slice in the subgraph of the PDG that is induced by the marked
vertices. By construction, this slice only contains vertices that were executed. This solution is
imprecise because it does not detect situations where there exists a flow edge in the PDG between
a marked vertex v1 and a marked vertex v2, but where the definitions of v1 are not actually used at
v2.

For example, Figure 23 (a) shows the PDG of the example program of Figure 2 (a). Suppose
that we want to compute the slice w.r.t. the final value of x for input n = 2. All vertices of
the PDG are executed, causing all PDG vertices to be marked. The static slicing algorithm of
Section 3.1.3 will therefore produce the entire program as the slice, even though the assignment x
:= 18 is irrelevant. This assignment is included in the slice because there exists a dependence
edge from vertex x := 18 to vertex write(x) even though this edge does not represent a
dependence that occurs during the second iteration of the loop. More precisely, this dependence
only occurs in iterations of the loop where the control variable i has an odd value.

The second approach consists of marking PDG edges as the corresponding dependences arise
during execution. Again, the slice is obtained by traversing the PDG, but this time only along
marked edges. Unfortunately, this approach still produces imprecise slices in the presence of loops
because an edge that is marked in some loop iteration will be present in all subsequent iterations,
even when the same dependence does not recur. Figure 23 (b) shows the PDG of the example
program of Figure 18 (a). For input n = 2, all dependence edges will be marked, causing the
slice to consist of the entire program. It is shown in [35] that a potential refinement of the second
approach, consisting of unmarking edges of previous iterations, is incorrect.

21The dependence graphs of [35] do not have an entry vertex. The absence of an entry vertex does not result in a
different slice. For reasons of uniformity, all dependence graphs shown in this thesis have an entry vertex.

37

Agrawal and Horgan point out the interesting fact that their second approach for computing
dynamic slices produces results that are identical22 to those of the algorithm proposed by Korel
and Laski (see Section 4.1.1). However, the PDG of a program (with optionally marked edges)
requires only O�n2� space (n denotes the number of statements in the program), whereas Korel
and Laski’s trajectories requireO�N� space, whereN denotes the number of executed statements.

Agrawal and Horgan’s second approach computes overly large slices because it does not
account for the fact that different occurrences of a statement in the execution history may be
(transitively) dependent on different statements. This observation motivates their third solution:
create a distinct vertex in the dependence graph for each occurrence of a statement in the execution
history. This kind of graph is referred to as a Dynamic Dependence Graph (DDG). A dynamic
slicing criterion is identified with a vertex in the DDG, and a dynamic slice is computed by
determining all DDG vertices from which the criterion can be reached. A statement or control
predicate is included in the slice if the criterion can be reached from at least one of the vertices for
its occurrences.

Figure 23 (c) shows the DDG for the example program of Figure 18 (a). The slicing criterion
corresponds to the vertex labeled write(z), and all vertices from which this vertex can be
reached are indicated by shading. Observe that the criterion cannot be reached from the vertex
labeled x := 18. Therefore the corresponding assignment is not in the slice.

The disadvantage of using DDGs is that the number of vertices in a DDG is equal to the number
of executed statements. The number of dynamic slices, however, is in the worst caseO�2n�, where
n is the number of statements in the program being sliced. Figure 24 shows a program Qn that
has O�2n� dynamic slices. The program reads a number of values in variables xi �1 � i � n�,
and allows one to compute the sum

P
x�S x, for any number of subsets S � f x1� 	 	 	 � xn g.

The crucial observation here is that, in each iteration of the outer loop, the slice with respect to
statement write(y) will contain exactly the statements read(xi) for xi � S. Since a set with
n elements has 2n different subsets, program Qn has O�2n� different dynamic slices.

Agrawal and Horgan propose to reduce the number of vertices in the DDG by merging vertices
for which the transitive dependences map to the same set of statements. In other words, a new
vertex is only introduced if it can create a new dynamic slice. Obviously, this check involves
some run-time overhead. The resulting graph is referred to as the Reduced Dynamic Dependence
Graph (RDDG) of a program. Slices computed using RDDGs have the same precision as those
computed using DDGs.

In the DDG of Figure 23 (c), the vertices labeled i := i + 1 and the rightmost two vertices
labeled i <= n have the same transitive dependences; these vertices depend on statements 1, 2,
3, and 8 of the program of Figure 18 (a). Hence, the RDDG for this program (given input n =
2) is obtained by merging these four DDG vertices into one vertex.

Agrawal and Horgan [35] present an algorithm for the construction of an RDDG without
having to keep track of the entire execution history. The information that needs to be maintained
is: (i) for each variable, the vertex corresponding to its last definition, (ii) for each predicate, the
vertex corresponding to its last execution, and (iii) for each vertex in the RDDG, the dynamic slice
w.r.t. that vertex.

22Actually, there is a minor difference, which has to do with the fact that the slices computed by the Korel-Laski
algorithm may give rise to run-time errors when executed. This was discussed in the last paragraph of Section 4.1.1.

38

if (i mod 2 = 0)

Entry

read(n) i := 1 while (i <= n) write(x)

i := i + 1

x := 17 x := 18

if (i mod 2 = 0)

Entry

read(n) i := 1 write(z)

z := x i := i + 1

x := 17 x := 18

while (i <= n)

(a) (b)

x := 18

Entry

read(n) i := 1 write(z)

i := i + 1 i := i + 1

z := x z := x

x := 17

while (i <= n) while (i <= n) while (i <= n)

if (i mod 2 = 0)if (i mod 2 = 0)

(c)

Figure 23: (a) PDG of the program of Figure 2 (a). (b) PDG of the program of Figure 18 (a). (c) DDG
of the program of Figure 18 (a).

program Qn;
read(x1);
� � �
read(xn);
MoreSubsets := true;
while MoreSubsets do
begin

Finished := false;
y := 0;
while not(Finished) do
begin
read(i);
case (i) of
1: y := y + xi;
� � �
n: y := y + xn;

end;
read(Finished);

end;
write(y);
read(MoreSubsets);

end
end.

Figure 24: Program Qn with O�2n� different dynamic slices.

39

4.2 Procedures

Agrawal, DeMillo and Spafford [73] consider dynamic slicing of procedures with call-by-value,
call-by-reference, call-by-result, and call-by-value-result parameter-passing. A key property of
their method is that dynamic data dependences are defined in terms of definitions and uses of
memory locations; this has the advantage that global variables do not require special treatment,
and that no alias analysis is necessary. Agrawal et al. describe how each parameter passing
mechanism can be modeled by a set of mock assignments that is inserted before and/or after
each procedure call. In the subsequent discussion, it is assumed that a procedure P with formal
parameters f1� 	 	 	 � fn is called with actual parameters a1� 	 	 	 � an. Call-by-value parameter-
passing can be modeled by a sequence of assignments f1:�a1; 	 	 	; fn:�an that is executed
before the procedure is entered. In order to determine the memory cells for the correct activation
record, the USE sets for the actual parameters ai are determined before the procedure is entered,
whereas the DEF sets for the formal parameters fi are determined after the procedure is entered.
For Call-by-value-result parameter-passing, additional assignments of formal parameters to actual
parameters have to be performed upon exit from the procedure. Call-by-reference parameter-
passing does not require any actions specific to dynamic slicing, as the same memory cell is
associated with corresponding actual and formal parameters ai and fi.

An alternative approach for interprocedural dynamic slicing was presented by Kamkar, Shah-
mehri, and Fritzson [87, 88]. This work distinguishes itself from the solution by Agrawal et al. by
the fact that the authors are primarily concerned with procedure-level slices. That is, they study
the problem of determining the set of call sites in a program that affect the value of a variable at a
particular call site.

During execution, a (dynamic dependence) summary graph is constructed. The vertices of
this graph, referred to as procedure instances, correspond to procedure activations annotated with
their parameters23. The edges of the summary graph are either activation edges corresponding to
procedure calls, or summary dependence edges. The latter type reflects transitive data and control
dependences between input and output parameters of procedure instances.

A slicing criterion is defined as a pair consisting of a procedure instance, and an input or
output parameter of the associated procedure. After constructing the summary graph, a slice with
respect to a slicing criterion is determined in two steps. First, the parts of the summary graph from
which the criterion can be reached is determined; this subgraph is referred to as an execution slice.
Vertices of an execution slice are partial procedure instances, because some parameters may be
“sliced away”. An interprocedural program slice consists of all call sites in the program for which
a partial instance occurs in the execution slice.

Three approaches for constructing summary graphs are considered. In the first approach,
intraprocedural data dependences are determined statically: this may result in inaccurate slices in
the presence of conditionals. In the second approach, all dependences are determined at run-time.
While this results in more accurate dynamic slices, the dependences for a procedure P have to be
re-computed every time P is called. The third approach attempts to combine the efficiency of the
“static” approach with the accuracy of the “dynamic” approach by computing the dependences
inside basic blocks statically, and the inter-block dependences dynamically. In all approaches
control dependences24 are determined statically. It is unclear how useful this third approach is

23More precisely, Kamkar refers to the incoming and outgoing variables of a procedure. This notion also applies to
global variables that are referenced or modified in a procedure.

24Kamkar et al. use a notion of termination-preserving control dependence that is similar to Podgurski and Clarke’s
weak control dependence [77].

40

in the presence of composite variables and pointers, where the run-time intra-block dependences
cannot be determined statically: additional alias analysis would have to be performed at run-time.

Kamkar [14] adapts the interprocedural slicing method by Kamkar et al. [87, 88] to compute
statement-level interprocedural slices (i.e., slices consisting of a set of statements instead of a set
of call sites). In essence, this is accomplished by introducing a vertex for each statement instance
(instead of each procedure instance) in the summary graph. The same three approaches (static,
dynamic, combined static/dynamic) for constructing summary graphs can be used.

Choi, Miller and Netzer [12] discuss an approach for interprocedural flowback analysis.
Initially, it is assumed that a procedure call may modify every global variable; to this end, the static
PDG is augmented with linking edges indicating potential data dependences. In a second phase,
interprocedural summary information is used to either replace linking edges by data dependence
edges, or delete them from the graph. Some linking edges may remain; these have to be resolved
at run-time.

4.3 Composite data types and pointers

4.3.1 Dynamic flow concepts

Korel and Laski [37] consider slicing in the presence of composite variables by regarding each
element of an array, or field of a record as a distinct variable. Dynamic data structures are treated
as two distinct entities, namely the pointer itself and the object being pointed to. For dynamically
allocated objects, they propose a solution where a unique name is assigned to each object.

4.3.2 Dependence graphs

Agrawal, DeMillo, and Spafford [73] present a dependence graph based algorithm for dynamic
slicing in the presence of composite data types and pointers. Their solution consists of expressing
DEF and USE sets in terms of actual memory locations provided by the compiler. The algorithm of
[73] is similar to that for static slicing in the presence of composite data types and pointers by the
same authors (see Section 3.4). However, during the computation of dynamic reaching definitions,
no Maybe Intersections can occur—only Complete and Partial Intersections.

Choi, Miller, and Netzer [12] extend the flowback analysis method by Miller and Choi [11]
(see Section 4.1.3) in order to deal with arrays and pointers. For arrays, linking edges are added
to their static PDGs; these edges express potential data dependences that are either deleted, or
changed into genuine data dependences at run-time. Pointer accesses are resolved at run-time, by
recording all uses of pointers in the log file.

4.4 Concurrency

4.4.1 Dynamic flow concepts

Korel and Ferguson [89] extend the dynamic slicing method of Korel and Laski [9, 37] to distributed
programs with Ada-type rendezvous communication (see, e.g., [90]). For a distributed program,
the execution history is formalized as a distributed program path that, for each task, comprises:
(i) the sequence of statements (trajectory) executed by it, and (ii) a sequence of triples �A�C�B�
identifying each rendezvous the task is involved in. Here, A identifies the accept statement in the
task, B identifies the other task that participated in the communication, and C denotes the entry
call statement in the task that was involved in the rendezvous.

41

A dynamic slicing criterion of a distributed program specifies: (i) the input of each task, (ii) a
distributed program path P , (iii) a task w, (iv) a statement occurrence q in the trajectory of w, and
(v) a variable v. A dynamic slice with respect to such a criterion is an executable projection of the
program that is obtained by deleting statements from it. However, the program is only guaranteed
to preserve the behavior of the program if the rendezvous in the slice occur in the same relative
order as in the program. (Note that not all rendezvous of the program need to be in the slice.)

The Korel-Ferguson method for computing slices of distributed programs of is basically a
generalization of the Korel-Laski method, though stated in a slightly different manner. In addition
to the previously discussed dynamic flow concepts (see Section 4.1.1), a notion of communication
influence is introduced, to capture the interdependences between tasks. The authors also present
a distributed version of their algorithm that uses a separate slicing process for each task.

4.4.2 Dependence graphs

Duesterwald, Gupta, and Soffa [91] present a dependence graph based algorithm for computing
dynamic slices of distributed programs. They introduce a Distributed Dependence Graph (DDG)25

for representing distributed programs.
A distributed program P consists of a set of processes P1� 	 	 	 � Pn. Communication between

processes is assumed to be synchronous and nondeterministic and is expressed by way of send
and receive statements. A distributed dynamic slicing criterion �I1�X1�� 	 	 	 � �In�Xn� specifies
for each process Pi its input Ii, and a set of statements Xi. A distributed dynamic slice S is an
executable set of processes P �

1� 	 	 	 � P
�

n such that the statements of P �

i are a subset of those of Pi.
Slice S computes the same values at statements in each Xi as program P does, when executed
with the same input. This is accomplished by: (i) including all input statements in the slice,
and (ii) replacing nondeterministic communication statements in the program by deterministic
communication statements in the slice.

A DDG contains a single vertex for each statement and control predicate in the program.
Control dependences between statements are determined statically, prior to execution. Edges for
data and communication dependences are added to the graph at run-time. Slices are computed
in the usual way by determining the set of DDG vertices from which the vertices specified in
the criterion can be reached. Both the construction of the DDG and the computation of slices is
performed in a distributed manner; a separate DDG construction process and slicing process is
assigned to each process Pi in the program; these processes communicate when a send or receive
statement is encountered.

Due to the fact that a single vertex is used for all occurrences of a statement in the execution
history, inaccurate slices may be computed in the presence of loops (see Section 4.1.1). For
example, the slice with respect to the final value of z for the program of Figure 18 with input n =
2 will be the entire program.

Cheng [76] presents an alternative dependence graph based algorithm for computing dynamic
slices of distributed and concurrent programs. The PDN representation of a concurrent pro-
gram (see Section 3.5) is used for computing dynamic slices. Cheng’s algorithm is basically a
generalization of the initial approach proposed by Agrawal and Horgan [35]: the PDN vertices
corresponding to executed statements are marked, and the static slicing algorithm of Section 3.5 is
applied to the PDN subgraph induced by the marked vertices. As was discussed in Section 4.1.3,
this yields inaccurate slices.

25This abbreviation ‘DDG’ used in Section 4.4.2 should not be confused with the notion of a Dynamic Dependence
Graph that was discussed earlier in Section 4.1.

42

Choi et al. [11, 12] describe how their approach for flowback analysis can be extended to
parallel programs. Shared variables with semaphores, message-passing communication, and Ada-
type rendezvous mechanisms are considered. To this end, a parallel dynamic graph is introduced
that contains synchronization vertices for synchronization operations (such as P and V on a
semaphore) and synchronization edges that represent dependences between concurrent processes.
Choi et al. explain how, by analysis of the parallel dynamic graph, read/write and write/write
conflicts between concurrent processes can be found.

4.5 Comparison

In this section, we compare and classify the dynamic slicing methods that were presented earlier.
The section is organized as follows: Section 4.5.1 summarizes the problems that are addressed
in the literature. Sections 4.5.2 and 4.5.3 compare the accuracy and efficiency of slicing methods
that address the same problem, respectively. Finally, Section 4.5.4 investigates the possibilities
for “combining” algorithms that deal with different problems.

4.5.1 Overview

Table 4 lists the dynamic slicing algorithms discussed earlier, and summarizes the issues studied
in each paper. For each paper, the table shows: (i) the computation method, (ii) whether or not
the computed slices are executable programs, (iii) whether or not an interprocedural solution is
supplied, (iv) the data types under consideration, and (v) whether or not concurrency is considered.
Similar to Table 2, the table only shows problems that have been addressed. It does not indicate
how various algorithms may be combined, and it also does not give an indication of the quality of
the work. The work by Field et al. [17, 18, 92, 79] mentioned in Table 4 relies on substantially
different techniques than those used for the dynamic slicing algorithms discussed previously, and
will therefore be studied separately in Section 6.

Unlike in the static case, there exists a significant difference between methods that compute
executable slices [9, 37, 91, 89], and approaches that compute slices merely consisting of sets
of statements [35, 73, 49]. The latter type of slice may not be executable due to the absence of
assignments for incrementing loop counters26. For convenience, we will henceforth refer to such
slices as “non-executable” slices. As was discussed in Section 4.1.1, the algorithms that compute
executable dynamic slices may produce inaccurate results in the presence of loops.

Apart from the work by Venkatesh [15], there is very little semantic justification for any of
the methods for computing “non-executable” slices. The algorithms of [11, 35, 87, 76, 88] are
graph-reachability algorithms that compute a set of statements that directly or indirectly “affect”
the values computed at the criterion. Besides the algorithms themselves, little or no attention is
paid to formal characterization of such slices.

4.5.2 Accuracy

basic algorithms. The slices computed by Korel and Laski’s algorithm [9, 37] (see Section 4.1.1)
are larger than those computed by the algorithms by Agrawal and Horgan [35] (see Section 4.1.3)
and Gopal [49] (see Section 4.1.2). This is due to Korel and Laski’s constraint that their slices
should be executable.

26Of course, such a slice may be executed anyway; however, it may not terminate.

43

a b

M
et

ho
d

C
om

pu
ta

tio
n

E
xe

cu
ta

bl
e

In
te

rp
ro

ce
du

ra
l

So
lu

tio
n

D
at

a

T
yp

es

C
on

cu
rr

en
cy

Korel, Laski [9, 37] D yes no S, A, P no
Korel, Ferguson [89] D yes no S, A yes
Gopal [49] I no no S no
Agrawal, Horgan [35] G no no S no
Agrawal et al. [93, 73] G no yes S, A, P no
Kamkar et al. [87, 88] G no yes S no
Duesterwald et al. [91] G yes no S, A, P yes
Cheng [76] G no no S yes
Choi et al. [11, 12] G no yes S, A, P yes
Field et al. [17, 18, 92, 79] R yes no S, A, P no

aD = dynamic flow concepts, I = dynamic dependence relations, G = reachability in a dependence
graph. R = dependence tracking in term graph rewriting systems (see Section 6).
bS = scalar variables, A = arrays/records, P = pointers.

Table 4: Overview of dynamic slicing methods.

procedures. Dependence graph based algorithms for interprocedural dynamic slicing were pro-
posed by Agrawal, DeMillo, and Spafford [73], and by Kamkar et al. [87, 88] (see Section 4.2).
It is unclear if one of these algorithms produces more accurate slices than the other.

composite variables and pointers. Korel and Laski [37] (see Section 4.1.1), and Agrawal,
DeMillo, and Spafford (see Section 4.1.3) proposed methods for dynamic slicing in the presence
of composite variables and pointers. We are unaware of any difference in accuracy.

concurrency. Korel et al. [89] (see Section 4.4.1) and Duesterwald et al. [91] (see Section 4.4.2)
compute executable slices, but deal with nondeterminism in a different way. The former approach
is based on a mechanism for replaying rendezvous in the slice in the same relative order as they
appeared in the original program by analyzing a previously stored log file. The latter approach
replaces nondeterministic communication statements that occur in the program by deterministic
communication statements in the slice, so that the slice can be re-executed yielding similar results.
Cheng [76] and Choi et al. [11, 12] (see Section 4.4.2) do not address this problem because the
slices they compute are not necessarily executable. The dynamic slicing methods by Cheng and
Duesterwald et al. are inaccurate because they are based on “static” dependence graphs in which
no distinction is made between the different occurrences of a statement in the execution history
(see the discussion in Section 4.1.3).

4.5.3 Efficiency

Since dynamic slicing involves run-time information, it is not surprising that all dynamic slicing
methods discussed in this section have time requirements that depend on the number of executed
statements (or procedure calls in the case of [87, 88]) N . All algorithms spend at least O�N� time

44

during execution in order to store the execution history of the program, or to update dependence
graphs. Certain algorithms (e.g., [9, 37, 89]) traverse the execution history in order to extract the
slice and thus require again at least O�N� time for each slice, whereas other algorithms require
less (sometimes even constant) time. Whenever time requirements are discussed below, the time
spent during execution for constructing histories or dependence graphs will be ignored. Space
requirements will always be discussed in detail.

basic algorithms. Korel and Laski’s solution [9, 37] (see Section 4.1.1) requiresO�N� space to
store the trajectory, andO�N2� space to store the dynamic flow concepts. Construction of the flow
concepts requiresO�N � �v�n�� time, where v and n are the number of variables and statements
in the program, respectively. Extracting a single slice from the computed flow concepts can be
done in O�N� time.

The algorithm by Gopal [49] (see Section 4.1.2) requires O�N� space to store the execution
history and O�n� v� space to store the �S relation. The time required to compute the �S relation
for a program S is bounded by O�N 2 � v2�. From this relation, slices can be extracted in O�v�
time.

As was discussed in Section 4.1.3, the slicing method proposed by Agrawal and Horgan
requires at most O�2n� space, where n is the number of statements in the program. Since vertices
in an RDDG are annotated with their slice, slices can be extracted from it in O�1�.

procedures. The interprocedural dynamic slicing method proposed by Kamkar et al. [87, 88]
(see Section 4.2) requires O�P 2� space to store the summary graph, where P is the number of
executed procedure calls. A traversal of this graph is needed to extract a slice; this takes O�P 2�
time.

The time and space requirements of the method by Agrawal, DeMillo, and Spafford [73] are
essentially the same as those of the Agrawal-Horgan basic slicing method discussed above.

composite variables and pointers. The algorithms by Korel and Laski [37] (see Section 4.3.1)
and Agrawal, DeMillo, and Spafford [73] (see Section 4.3.2) for slicing in the presence of
composite variables and pointers are adaptations of the basic slicing algorithms by Korel and
Laski and Agrawal and Horgan, respectively (see the discussion above). These adaptations, which
essentially consist of a change in the reaching definitions functions that are used to determine data
dependences, do not affect the worst-case behavior of the algorithms. Therefore, we expect the
time and space requirements to be the same as in the scalar variable case.

concurrency. The algorithms by Cheng [76] and Duesterwald et al. [91] are based on static
PDGs. Therefore, only O�n2� space is required to store the dependence graph, and slices can
be extracted in O�n2� time. The distributed slicing algorithm by Duesterwald et al. [91] uses a
separate slicing process for each process in the program; the slicing process for processPi requires
time O�ei�, where ei is the number of edges in the PDG for process Pi. The communication
overhead between the slicing processes requires at mostO�e� time, where e is the number of edges
in the entire graph.

45

Pr
oc

ed
ur

es

C
om

po
si

te

V
ar

ia
bl

es

C
on

cu
rr

en
cy

Dyn. Flow — Korel, Laski [9, 37] Korel, Ferguson [89]
Concepts
Dyn. Dependence Gopal [49] — —
Relations
Dependence Agrawal et al. [73] Agrawal et al. [73] Duesterwald et al. [91]
Graphs Kamkar et al. [87, 88] Cheng [76]

Choi et al. [11, 12]

Table 5: Orthogonal dimensions of dynamic slicing.

4.5.4 Combining dynamic slicing algorithms

Table 5 displays solutions to “orthogonal” dimensions of dynamic slicing: dealing with procedures,
composite variables and pointers, and communication between processes. The algorithms based
on dynamic flow concepts for dealing with composite variables/pointers [37], and concurrency
[89] may be integrated with little problems. For dependence graphs, however, the situation is
slightly more complicated because:

 Different graph representations are used. Agrawal et al. [73], Kamkar et al. [87, 88] and
Choi et al. [11, 12] use dynamic dependence graphs with distinct vertices for different
occurrence of statements in the execution history. In contrast, Duesterwald et al. [91] and
Cheng [76] use variations of static PDGs.

 The dynamic slicing approach of Agrawal et al. [73] is based on definition and use of memory
locations. All other dependence graph based slicing methods are based on definitions and
uses of variable names.

Furthermore, it is unclear if the combined static/dynamic interprocedural slicing approach by
Kamkar et al. [87, 88] is practical in the presence of composite variables and pointers, because the
intra-block dependences cannot be determined statically in this case, and additional alias analysis
would be required at run-time.

5 Applications of program slicing

5.1 Debugging and program analysis

Debugging can be a difficult task when one is confronted with a large program, and few clues
regarding the location of a bug. Program slicing is useful for debugging, because it potentially
allows one to ignore many statements in the process of localizing a bug [56]. If a program
computes an erroneous value for a variable x, only the statements in the slice w.r.t. x have
(possibly) contributed to the computation of that value. In this case, it is likely that the error occurs
in the one of the statements in the slice. However, it need not always be the case that the error

46

occurs in the slice, as an error may consist of a statement that is missing inadvertently. However,
in situations like this it is probable that more, or different statements show up in the slice than one
would expect.

Forward slices are also useful for debugging. A forward slice w.r.t. a statement s can show
how a value computed at s is being used subsequently, and can help the programmer ensure that
s establishes the invariants assumed by the later statements. For example, this can be useful in
catching off-by-one errors. Another purpose of forward slicing is to inspect the parts of a program
that may be affected by a proposed modification, to check that there are no unforeseen effects on
the program’s behavior.

Lyle and Weiser [19] introduce program dicing, a method for combining the information of
different slices. The basic idea is that, when a program computes a correct value for variable x and
an incorrect value for variable y, the bug is likely to be found in statements that are in the slice w.r.t.
y, but not in the slice w.r.t. x. This approach is not fail-safe in the presence of multiple bugs, and
when computations that use incorrect values produce correct values (referred to as coincidental
correctness by Agrawal [93]). The authors claim that program dicing still produces useful results
when these assumptions are relaxed.

Bergeretti and Carré [7] explain how static slicing methods can detect “dead” code, i.e.,
statements that cannot affect any output of the program. Often, such statements are not executable
due to the presence of a bug. Static slicing can also be employed to determine uses of uninitialized
variables, another symptom of an error in the program. However, there exist previous techniques
for detection of dead code and uses of uninitialized variables [65, 86] that do not rely on slicing.

In debugging, one is often interested in a specific execution of a program that exhibits anoma-
lous behavior. Dynamic slices are particularly useful here, because they only reflect the actual
dependences of that execution, resulting in smaller slices than static ones. Agrawal’s dissertation
[93] contains a detailed discussion how static and dynamic slicing can be utilized for semi-
automated debugging of programs [35, 73]. He proposes an approach where the user gradually
“zooms out” from the location where the bug manifested itself by repeatedly considering larger
data and control slices. A data slice is obtained by only taking (static or dynamic) data depen-
dences into account; a control slice consists of the set of control predicates surrounding a language
construct. The closure of all data and control slices w.r.t. an expression is the (static or dynamic)
slice w.r.t. the set of variables used in the expression. The information of several dynamic slices
can be combined to gain some insight into the location of a bug. Several operations on slices are
proposed to this end, such as union, intersection, and difference. The difference operation is a
dynamic version of the program “dicing” notion of Lyle and Weiser [19]. Obviously, these opera-
tions for combining slices may produce false leads in the presence of multiple bugs or coincidental
correctness. Agrawal, DeMillo, and Spafford [20] discuss the implementation of a debugging tool
that is based on ideas in previous papers by the same authors [93, 73, 35].

Pan and Spafford [22, 23] present a number of heuristics for fault localization. These heuristics
describe how dynamic slices (variations on the type proposed by Agrawal et al. [35]) can be used
for selecting a set of suspicious statements that is likely to contain a bug. The approach of Pan and
Spafford consists of two phases. First, the program is executed for an extensive number of test
cases, and each test case is classified as being error-revealing or non-error-revealing, depending
on the fact whether or not its reveals the presence of a bug. The second step consists of the actual
heuristic rules for combining the information contained in dynamic slices for these test cases in
various ways. As an example, one might think of displaying the set of statements that occur in
every dynamic slice for an error-revealing test-case—such statements are likely to contain the bug.
Other heuristics depend on the inclusion frequency or the influence frequency of statements in

47

dynamic slices. The former denotes the number of slices in which a particular statement occurs,
whereas the latter notion indicates the number of times that a statement in a particular dynamic
slice is “referred to” in terms of data dependence and control dependence. For example, one of
the heuristics given by Pan and Spafford consists of selecting the statements with “high” influence
frequency in a slice for a selected error-revealing test case. Note that this requires a threshold to
be specified by the user that determines the boundary between “high” and “low” frequencies. It is
argued that this boundary can be shifted interactively, thereby gradually increasing the number of
statements under consideration.

Choi, Miller and Netzer [12] describe the design and efficient implementation of a debugger for
parallel programs that incorporates flowback analysis, a notion introduced in the seminal paper by
Balzer [10]. Intuitively, flowback analysis reveals how the computation of values depends on the
earlier computation of other values. The difference between flowback analysis and (dependence
graph based) dynamic slices is that the former notion allows one to interactively browse through
a dependence graph, whereas the latter consists of the set of all program parts corresponding to
vertices of the graph from which a designated vertex—the criterion—can be reached.

Fritzson et al. use interprocedural static [21] and dynamic [87, 14] slicing for algorithmic
debugging [94, 95]. An algorithmic debugger partially automates the task of localizing a bug
by comparing the intended program behavior with the actual program behavior. The intended
behavior is obtained by asking the user whether or not a program unit (e.g., a procedure) behaves
correctly. Using the answers given by the user, the location of the bug can be determined at the
unit level. By applying the algorithmic debugging process to a slice w.r.t. an incorrectly valued
variable instead of the entire program, many irrelevant questions can be skipped.

5.2 Program differencing and program integration

Program differencing [25] is the task of analyzing an old and a new version of a program in order to
determine the set of program components of the new version that represent syntactic and semantic
changes. Such information is useful because only the program components reflecting changed
behavior need to be tested. The key issue in program differencing consists of partitioning the
components of the old and new version in a way that two components are in the same partition
only if they have equivalent behaviors. The program integration algorithm of Horwitz, Prins, and
Reps [26] discussed below, compares slices in order to detect equivalent behaviors. However, an
alternative partitioning technique by Yang et al. [83, 25], which is not based on comparing slices but
on comparing smaller units of code, produces more accurate results because semantics-preserving
transformations (e.g., copy propagation) can be accommodated.

Horwitz, Prins, and Reps [26] use the static slicing algorithm for single-procedure programs
by Horwitz, Reps, and Binkley [36] as a basis for an algorithm that integrates changes in variants
of a program. The inputs of their algorithm consist of a program Base, and two variants A and B
that have been derived from Base. The algorithm consists of the following steps:

1. The PDGsGBase ,GA, andGB are constructed. Correspondences between “related” vertices
of these graphs are assumed to be available.

2. Sets of affected points of GA and GB w.r.t. GBase are determined; these consist of vertices
in GA (GB) that have a different slice in GBase

27.

27These sets of affected points can be computed efficiently by way of a forward slice w.r.t. all directly affected points,
i.e., all vertices in GA that do not occur in GBase and all vertices in that have a different set of incoming edges in GA
and in GBase [40].

48

3. A merged PDG GM is constructed from GA, GB , and the sets of affected points determined
in (2).

4. UsingGA,GB ,GM , and the sets of affected points computed in (2), the algorithm determines
whether or not the behaviors of A and B are preserved in GM . This is accomplished by
comparing the slices w.r.t. the affected points ofGA (GB) inGM andGA (GB). If different
slices are found, the changes interfere and the integration cannot be performed.

5. If the changes in A and B do not interfere, the algorithm tests if GM is a feasible PDG, i.e.,
if it corresponds to some program. If this is the case, program M is constructed from GM .
Otherwise, the changes in A and B cannot be integrated.

The comparison of slices (in step 4) relies on the existence of a mapping between the different
components. If such a mapping were not available, however, the techniques of Horwitz and Reps
[43] for comparing two slices in time that is linear in the sum of their sizes could be used. A
semantic justification for the single-procedure slicing algorithm of Horwitz, Reps, and Binkley
[36] and the program integration algorithm of Horwitz, Prins, and Reps [26] is presented by
Reps and Yang [42]. This paper formalizes the relationship between the execution behaviors of
programs, slices of those programs, and between variants of a program and the corresponding
integrated version.

Reps [96] presents an alternative formulation of the Horwitz-Prins-Reps program integration
algorithm that is based on Brouwerian algebras. The algebraic laws that hold in such algebras
are used to restate the algorithm and to prove properties such as associativity of consecutive
integrations.

Binkley, Horwitz and Reps [97] generalize the integration algorithm of Horwitz, Prins, and
Reps [26] to multi-procedure programs. It is shown that such programs cannot be integrated
on a per-procedure basis (program behavior would not be preserved in all cases), and that a
straightforward extension using the Horwitz-Reps-Binkley interprocedural slicing algorithm is
insufficiently powerful (it reports “interference” in too many cases). While a complete discussion
of the theory that underlies the Binkley-Horwitz-Reps multi-procedure integration algorithm is
outside the scope of this paper, it can be remarked here that the algorithm relies on backward and
forward interprocedural slices on the SDG representation of the program.

5.3 Software maintenance

One of the problems in software maintenance consists of determining whether a change at some
place in a program will affect the behavior of other parts of the program. Gallagher and Lyle
[70, 27] use static slicing for the decomposition of a program into a set of components (i.e., reduced
programs), each of which captures part of the original program’s behavior. They present a set of
guidelines for the maintainer of a component that, if obeyed, preclude changes in the behavior of
other components. Moreover, they describe how changes in a component can be merged back into
the complete program in a semantically consistent way.

Gallagher and Lyle use the notion of a decomposition slice for the decomposition of programs.
Intuitively, a decomposition slice captures part of the behavior of a program, and its complement
captures the behavior of the rest of the program. A decomposition slice w.r.t. a variable v is
defined as the set of all statements that may affect the “observable” value of v at some point; it is
defined as the union of the slices w.r.t. v at any statement that outputs v, and the last statement
of the program. An output-restricted decomposition slice (ORD slice) is a decomposition slice

49

from which all output statements are removed. Two ORD slices are independent if they have no
statements in common; an ORD slice is strongly dependent on another ORD slice if it is a subset
of the latter. An ORD slice that is not strongly dependent on any other ORD slice is maximal.
A statement that occurs in more than one ORD slice is dependent; otherwise it is independent.
A variable is dependent if it is assigned to in some dependent statement; it is independent if it
is only assigned to in independent statements. Only maximal ORD slices contain independent
statements, and the union of all maximal ORD slices is equal to the original program (minus
output statements). The complement of an ORD slice is defined as the original program minus all
independent statements of the ORD slice and all output statements.

The essential observation by Gallagher and Lyle [27] is that independent statements in a slice
do not affect the data and control flow in the complement. This results in the following guidelines
for modification:

 Independent statements may be deleted from a decomposition slice.

 Assignments to independent variables may be added anywhere in a decomposition slice.

 Logical expressions and output statements may be added anywhere in a decomposition slice.

 New control statements that surround any dependent statements will affect the complement’s
behavior.

New variables may be considered as independent variables, provided that there are no name clashes
with variables in the complement. If changes are required that involve a dependent variable v,
the user can either extend the slice so that v is independent (in a way described in the paper), or
introduce a new variable. Merging changes to components into the complete program is a trivial
task. Since it is guaranteed that changes to an ORD slice do not affect its complement, only testing
of the modified slice is necessary.

5.4 Testing

A program satisfies a “conventional” data flow testing criterion if all def-use pairs occur in a
successful test-case. Duesterwald, Gupta, and Soffa [13] propose a more rigorous testing criterion,
based on program slicing: each def-use pair must be exercised in a successful test-case; moreover
it must be output-influencing, i.e., have an influence on at least one output value. A def-use pair
is output-influencing if it occurs in an output slice, i.e., a slice w.r.t. an output statement. It is up
to the user, or an automatic test-case generator to construct enough test-cases such that all def-use
pairs are tested. Three slicing approaches are utilized, based on different dependence graphs.
Static slices are computed using static dependence graphs (similar to the PDGs of Horwitz, Reps,
and Binkley [36]), dynamic slices are computed using dynamic dependence graphs (similar to
DDGs of Agrawal and Horgan [35], but instances of the same vertex are merged, resulting in a
slight loss of precision), and hybrid slices are computed using dependence graphs that are based
on a combination of static and dynamic information. In the hybrid approach, the set of variables
in the program is partitioned into two disjoint subsets in a way that variables in one subset do not
refer to variables in the other subset. Static dependences are computed for one subset (typically
scalar variables), dynamic dependences for the other subset (typically arrays and pointers). The
advantage of this approach is that it combines reasonable efficiency with reasonable precision.

Kamkar, Shahmehri, and Fritzson [28] extend the work of Duesterwald, Gupta, and Soffa to
multi-procedure programs. To this end, they define appropriate notions of interprocedural def-use

50

pairs. The interprocedural dynamic slicing method by Kamkar et al. [87, 88] is used to determine
which interprocedural def-use pairs have an effect on a correct output value, for a given test
case. The summary graph representation that was discussed in Section 4.2 is slightly modified
by annotating vertices and edges with def-use information. This way, the set of def-use pairs
exercised by a slice can be determined efficiently.

Regression testing consists of re-testing only the parts affected by a modification of a previously
tested program, while maintaining the “coverage” of the original test suite. Gupta, Harrold, and
Soffa [29] describe an approach to regression testing where slicing techniques are used. Backward
and forward static slices serve to determine the program parts affected by the change, and only
test cases that execute “affected” def-use pairs need to be executed again. Conceptually, slices
are computed by backward and forward traversals of the CFG of a program, starting at the point
of modification. However, the algorithms by Gupta, Harrold, and Soffa [29] are designed to
determine the information necessary for regression testing only (i.e., affected def-use pairs).

Binkley [98] describes an approach for reducing the cost of regression testing of multi-
procedure programs by (i) reducing the number of tests that must be re-run, and (ii) decreasing the
size of the program that they must run on. This is accomplished by determining the set of program
points affected by the modification, and the set of preserved program points (see Section 5.2). The
set of affected points is used to construct a smaller and more efficient program that only captures
the modified behavior of the original program; all test-cases that need to be re-run can be applied
to this program. The set of preserved points is used to infer which test-cases need not be re-run.

Bates and Horwitz [30] use a variation of the PDG notion of Horwitz, Prins, and Reps [26]
for incremental program testing. Testing criteria are defined in terms of PDG notions: i.e., the
“all-vertices” testing criterion is satisfied if each vertex of the PDG is exercised by a test set (i.e.,
each statement and control predicate in the program is executed). An “all-flow-edges” criterion is
defined in a similar manner. Given a tested and subsequently modified program, slicing is used
to determine: (i) the statements affected by the modification, and (ii) the test-cases that can be
reused for the modified program. Roughly speaking, the former consists of the statements that
did not occur previously as well as any statements that have different slices. The latter requires
partitioning the statements of the original and the modified program into equivalence classes;
statements are in the same class if they have the same “control” slice (a slightly modified version
of the standard notion). Bates and Horwitz prove that statements in the same class are exercised
by the same test cases.

5.5 Tuning compilers

Larus and Chandra [34] present an approach for tuning of compilers where dynamic slicing is used
to detect potential occurrences of redundant common subexpressions. Finding such a common
subexpression is an indication of sub-optimal code being generated.

Object code is instrumented with trace-generating instructions. A trace-regenerator reads a
trace and produces a stream of events, such as the read and load of a memory location. This stream
of events is input for a compiler-auditor (e.g., a common-subexpression elimination auditor) that
constructs dynamic slices w.r.t. the current values stored in registers. Larus and Chandra use a
variation of the approach by Agrawal and Horgan [35]: a dynamic slice is represented by directed
acyclic graph (DAG) containing all operators and operands that produced the current value in
a register. A common subexpression occurs when isomorphic DAGs are constructed for two
registers. However, the above situation only indicates that a common subexpression occurs in a
specific execution. A common subexpression occurs in all execution paths if its inputs are the

51

same in all executions. This is verified by checking that: (i) the program counter PC1 for the
first occurrence of the common subexpression dominates the program counter PC2 for the second
occurrence, (ii) the register containing the first occurrence of the common subexpression is not
modified along any path between PC1 and PC2, and (iii) neither are the inputs to the common
subexpression modified along any path between PC1 and PC2. Although the third condition is
impossible to verify in general, it is feasible to do so for a number of special cases. In general, it
is up to the compiler writer to check condition (iii).

5.6 Other applications

Weiser [24] describes how slicing can be used to parallelize the execution of a sequential program.
Several slices of a program are executed in parallel, and the outputs of the slices are spliced
together in such a way that the I/O behavior of the original program is preserved. In principle, the
splicing process may take place in parallel with the execution of the slices. A natural requirement
of Weiser’s splicing algorithm is that the set of all slices should “cover” the execution behavior
of the original program. Splicing does not rely on a particular slicing technique; any method
for computing executable static slices is adequate. Only programs with structured control flow
are considered, because Weiser’s splicing algorithm depends on the fact that execution behavior
can be expressed in terms of a so-called program regular expression. The main reason for this is
that reconstruction of the original I/O behavior becomes unsolvable in the presence of irreducible
control flow.

Ott and Thus [99] view a module as a set of processing elements that act together to compute
the outputs of a module. They classify the cohesion class of a module (i.e, the kind of relationships
between the processing elements) by comparing the slices w.r.t. different output variables. Low
cohesion corresponds to situations where a module is partitioned into disjoint sets of unrelated
processing elements. Each set is involved in the computation of a different output value, and
there is no overlap between the slices. Control cohesion consists of two or more sets of disjoint
processing elements each of which depends on a common input value; the intersection of slices
will consist of control predicates. Data cohesion corresponds to situations where data flows from
one set of processing elements to another; slices will have non-empty intersection and non-trivial
differences. High cohesion situations resemble pipelines. The data from a processing element
flows to its successor; the slices of high cohesion modules will overlap to a very large extent. The
paper does not rely on any specific slicing method, and no quantitative measures are presented.

Binkley [78] presents a graph rewriting semantics for System Dependence Graphs that is used
for performing interprocedural constant propagation. The Horwitz-Reps-Binkley interprocedural
slicing algorithm is used to extract slices that may be executed to obtain constant values.

Beck and Eichmann [31] consider the case where a “standard” module for an abstract data type
module is used, and where only part of its functionality is required. Their objective is to “slice
away” all unnecessary code in the module. To this end, they generalize the notion of static slicing
to modular programs. In order to compute a reduced version of a module, an interface dependence
graph (IDG) is constructed. This graph contains vertices for all definitions of types and global
variables, and subprograms inside a module. Moreover, the IDG contains edges for every def-use
relation between vertices. An interface slicing criterion consists of a module and a subset of the
operations of the ADT. Computing interface slices corresponds to solving a reachability problem
in an IDG. Inter-module slices, corresponding to situations where modules import other modules,
can be computed by deriving new criteria for the imported modules.

Jackson and Rollins present a reverse engineering tool called “Chopshop” in [33] that is based

52

read(n);
i := 1;
if (i > 0) then
n := n + 1

else
n := n * 2;

write(n)

read(n);
i := 1;
if (i > 0) then
n := n + 1

else
;

write(n)

read(n);

n := n + 1

;
write(n)

(a) (b) (c)

Figure 25: (a) Example program = static slice with respect to statement write(n). (b) More accurate
slice obtained by employing constant propagation. (c) Minimal slice.

on the techniques of [32] (see Sections 3.1.3 and 3.2.3). This tool provides facilities for visualizing
program slices in a graphical manner as diagrams. In addition to “chopping” (see Section 3.1.3),
their tool is capable of “abstracting” slices by eliminating all non-call-site nodes in a graph and
resulting in a graph with only call site vertices and transitive dependence edges between these
vertices.

Ning, Engberts, and Kozaczynski [16] discuss a set of tools for extracting components from
large Cobol systems. These tools include facilities for program segmentation, i.e., distinguishing
pieces of functionally related code. In addition to backward and forward static slices, condition-
based slices can be determined. For a condition-based slice, the criterion specifies a constraint on
the values of certain variables.

6 Recent developments

This section is concerned with recent work on improving the precision of slicing methods, which
relies on the removal of two important restrictions characteristic of the slicing algorithms discussed
previously:

1. The fact that a slice consists of a subset of the statements of the original program, sometimes
with the additional constraint that a slice must constitute a syntactically valid program.

2. The fact that slices are computed by tracing data and control dependences.

Both of these “restrictions” adversely affect the accuracy of the computed slices. Moreover, it
is important to realize that these issues are strongly interrelated in the sense that, in many cases,
dismissing the former constraint is a prerequisite for being able to dismiss the latter one.

Weiser already observed some problems caused by the first constraint in his dissertation [1,
page 6], where he states that ‘good source language slicing requires transformations beyond
statement deletion’. This remark can easily be understood by considering a situation where a
programming language does not allow if statements with empty branches, but where a slicing
algorithm would exclude all statements in such a branch. Taken to the extreme, such statements
can never be removed from a slice because the result would not be a syntactically valid program.
Hwang et al. [100] discuss a number of related problems and conclude that, in practice, statement
deletion alone is an inadequate method for deriving slices.

The second constraint—the fact that slices are to be computed by tracing data and control
dependences alone—has to be removed as well, if the singular objective is to compute slices that
are as small as possible. To see this, consider the example program of Figure 25 (a). Here, the

53

read(p);
read(q);
if (p = q) then
x := 18

else
x := 17;

if (p �� q) then
y := x;

else
y := 2;

write(y)

read(p);
read(q);
if (p = q) then

begin
x := 18;
y := 2

end
else

begin
x := 17;
y := x

end
write(y)

read(p);
read(q);
if (p = q) then

;
else
x := 17;

if (p �� q) then
y := x;

else
y := 2;

write(y)

(a) (b) (c)

Figure 26: (a) Example program = static slice with respect to the statement write(y). (b) Transformed
program. (c) More accurate slice obtained by slicing in the transformed program.

static slice with respect to statement write(n) as computed by any of the “conventional” slicing
algorithms consists of the entire program28. However, if constant propagation [101] or similar
optimization techniques could be used in slicing, the resulting slices might be more accurate. In
the program of Figure 25 (a), for example, one can determine that the value of i is constant,
and that the else branch of the conditional is never selected. Therefore, computation of the more
accurate slice of Figure 25 (b) is conceivable. Moreover, if replacement of an entire if statement
by one of the statements in its branches is allowed, one can imagine that the minimal slice of
Figure 25 (c) is determined.

Other compiler optimization techniques29, symbolic execution, and a variety of semantics-
preserving transformations can also be used for obtaining more accurate slices. For example,
Figure 26 (a) shows another example program, which is to be sliced with respect to its final
statement write(y). Once again, traditional slicing algorithms will fail to omit any statements.
A more accurate slice for this example can be acquired by “merging” the two if statements. The
effect of this semantics-preserving transformation is shown in Figure 26 (b). Clearly, a slicing
algorithm that can (conceptually) perform this transformation is in principle capable of determining
the more accurate slice of Figure 26 (c).

Approaches that use optimization techniques for obtaining more accurate slices, such as the
ones shown in Figures 25 and 26, were presented by Field, Ramalingam, and Tip [17, 18, 79], and
by Ernst [50]. At the conceptual level, these slicing approaches rely on the following components:

 Translation of the program to a suitable intermediate representation (IR).

 Transformation and optimization of the IR.

 Maintaining a mapping between the source-text, the original IR, and the optimized IR.

 Extraction of slices from the IR.

Field et al. [17, 18, 79] use an intermediate representation for imperative programs named
PIM [102] as a basis for their slicing approach. Both the translation of a program to its PIM

28Some algorithms [3, 7] would omit the write statement.
29See, e.g., [86] for a comprehensive overview.

54

representation, and subsequent optimizations of PIM graphs are defined by an equational logic,
which can be implemented by term rewriting [103] or graph rewriting [104]. Correspondences
between the source text of a program, its initial PIM graph, and the subsequently derived optimized
PIM graph are automatically maintained by a technique called dynamic dependence tracking
[17, 79]. This technique, which is defined for arbitrary term rewriting systems, keeps track of the
way in which new vertices that are dynamically created in a rewriting process are dependent upon
vertices that were previously present. These source correspondences are stored in PIM graphs as
annotations of vertices; in a sense this is similar to the way information is stored in the Reduced
Dynamic Dependence Graphs of Agrawal et al. [35] (see Section 4.1.3). Extracting a slice with
respect to a designated expression involves maintaining a pointer to the PIM-subgraph for that
expression, and retrieving the dynamic dependence information stored in that PIM-subgraph. For
details as to how this is accomplished, the reader is referred to [18, 79].

Both PIM and dynamic dependence tracking have been implemented using the ASF+SDF Meta-
environment, a programming environment generator [105] developed at CWI. Recent experiments
have produced promising results. In particular, the (accurate) slices of Figures 25 (b) and 26 (c)
have been computed. Recently, Tip [92, 79] has shown that dynamic dependence tracking can
also be used to compute accurate dynamic slices from a simple algebraic specification [106] that
specifies an interpreter.

Ernst [50] uses the Value Dependence Graph (VDG) [107] as an intermediate representation for
his slicing technique. The nodes of a VDG correspond to computations, and the edges represent
values that flow between computations. The most prominent characteristics of VDGs are: (i)
control flow is represented as data flow, (ii) loops are modeled by recursive function calls, and (iii)
all values and computations in a program, including operations on the heap and on I/O streams,
are explicitly represented in the VDG. The transformation/optimization of VDGs is discussed in
some detail in [107]. Ernst refers to the problem of maintaining a correspondence between the
VDG and the source code graph throughout the optimization process, but no details are presented
as to how this is accomplished. For the extraction of slices from a VDG, Ernst uses a simple and
efficient graph reachability algorithm similar to the one used by Ottenstein and Ottenstein [4].

We are currently unable to provide an in-depth comparison of the approaches by Field et
al. and by Ernst due to the elaborate optimizations that are involved, and the absence of any
information regarding the “source correspondences” used by Ernst. A few differences between
these works are obvious, however:

 The language considered by Ernst is substantially larger than the one studied in the Field-
Ramalingam-Tip paper. Ernst has implemented a slicer for the full C language (including
recursive procedures—see Section 3.2.3), whereas Field et al. do not (yet) address the
problems posed by procedures and unstructured control flow.

 The approach by Field et al. permits the use of a number of variations of the PIM logic for
treating loops, corresponding to different “degrees of laziness” in the language’s semantics.
Depending on the selected option, the computed slices will resemble the “non-executable”
slices computed by Agrawal and Horgan [35], or the “executable” slices computed by Korel
and Laski [37]. It is unclear from Ernst’s paper if his approach provides the same degree of
flexibility.

 Field et al. permit slices to be computed given any set of constraints on a program’s inputs,
and define the corresponding notion of a constrained slice, which subsumes the traditional

55

*(ptr = &a) = ?A;
b = ?B;
x = a;
if (a < 3)
ptr = &y;

else
ptr = &x;

if (b < 2)
x = a;

(*ptr) = 20;

*(= &a) = ?A;
b = ;
x = a;
if (a < 3)

ptr = &y;
else

if (<)
x = a;

(*ptr) = ;

*(= &a) = ?A;
b = ;
x = ;
if (a < 3)

else
ptr = &x;

if (<)
x = ;

(*ptr) = 20;

(a) (b) (c)

Figure 27: (a) An example program. (b) Constrained slice with respect to the final value of x given the
constraint ?A :� 2. (c) Conditional constrained slice with respect to the final value of x given the constraint
?A � 5.

concepts of static and dynamic slices. This is accomplished by rewriting PIM graphs that
contain variables (corresponding to unknown values) in combination with PIM-rules that
model symbolic execution. Ernst does not discuss a similar capability of his slicer.

 Field et al. define slices as a subcontext of (i.e., a “connected” set of function symbols in)
a program’s AST. Statements or expressions of the program that do not occur in the slice
are represented by “holes” (i.e., missing subterms) in a context. Although this notion of a
slice does not constitute an executable program in the traditional sense, the resulting slices
are executable in the sense that such as slice can be rewritten to a PIM graph containing the
same value for the expression specified in the slicing criterion, given the same constraints
on the program’s inputs.

Figure 27 shows an example program (taken from [18]), and some constrained slices of it
obtained using the approach by Field et al.30. The intuition behind these slices is quite simple:
a “boxed” expression in a slice may be replaced by any other expression without affecting the
computation of the value specified in the slicing criterion, given the specified constraints on the
program’s inputs. Although absurdly contrived, the example illustrates several important points.
By not insisting that a slice be a syntactically valid program, distinctions can be made between
assignment statements whose R-values are included but whose L-values are excluded and vice
versa, as Figure 27 (b) shows. Observe that it is possible to determine that the values tested in a
conditional are irrelevant to the slice, even though the body is relevant. In general, this permits a
variety of fine distinctions to be made that traditional slicing algorithms cannot.

7 Conclusions

We have presented a survey of the static and dynamic slicing techniques that can be found in the
present literature. As a basis for classifying slicing techniques we have used the computation
method, and a variety of programming language features such as procedures, unstructured control

30In this figure, expressions that begin with a question mark, e.g., ‘?A’, represent unknown values or inputs. Subterms
of the program’s AST that do not occur in the slices of Figure 27 (b) and (c) are replaced by a box.

56

flow, composite variables/pointers, and concurrency. Essentially, the problem of slicing in the
presence of one of these features is “orthogonal” to solutions for each of the other features. For
dynamic slicing methods, an additional issue is the fact whether or not the computed slices are
executable programs that capture a part of the program’s behavior. Wherever possible, different
solutions to the same problem were compared by applying each algorithm to the same example
program. In addition, the possibilities and problems associated with the integration of solutions
for “orthogonal” language features were discussed.

7.1 Static slicing algorithms

In Section 3.6, algorithms for static slicing were compared and classified. Besides listing the
specific slicing problems studied in the literature, we have compared the accuracy and, to some
extent, the efficiency of static slicing algorithms. The most significant conclusions of Section 3.6
can be summarized as follows:

basic algorithms. For intraprocedural static slicing in the absence of procedures, unstructured
control flow, composite data types and pointers, and concurrency, the accuracy of methods based
on dataflow equations [3], information-flow relations [7], and program dependence graphs [4] is
essentially the same. PDG-based algorithms have the advantage that dataflow analysis has to be
performed only once; after that, slices can be extracted in linear time. This is especially useful
when several slices of the same program are required.

procedures. The first solution for interprocedural static slicing, presented by Weiser [3], is
inaccurate for two reasons. First, this algorithm does not use exact dependence relations between
input and output parameters. Second, the call-return structure of execution paths is not taken
into account. The solution by Bergeretti and Carré [7] does not compute truly interprocedural
slices because no procedures other than the main program are sliced. Moreover, the approach
by Bergeretti and Carré is not sufficiently general to handle recursion. Exact solutions to the
interprocedural static slicing problem have been presented by Hwang, Du, and Chou [61], Reps,
Horwitz and Binkley [36], Reps, Horwitz, Sagiv, and Rosay [67, 63], Jackson and Rollins [32], and
Ernst [50]. The Reps-Horwitz-Sagiv-Rosay algorithm for interprocedural static slicing is the most
efficient of these algorithms. Binkley studied the issues of determining executable interprocedural
slices [68], and of interprocedural static slicing in the presence of parameter aliasing [64].

unstructured control flow. Lyle was the first to present an algorithm for static slicing in the
presence of unstructured control flow [56]. The solution he presents is conservative: it may
include more goto statements than necessary. Agrawal [47] has shown that the solutions proposed
by Gallagher and Lyle [70, 27] and by Jiang et al. [59] are incorrect. Precise solutions for static
slicing in the presence of unstructured control flow have been proposed by Ball and Horwitz
[45, 46], Choi and Ferrante [48], and Agrawal [47]. It is not clear how the efficiency of these
algorithms compares.

composite data types/pointers. Lyle [56] presented a conservative algorithm for static slicing
in the presence of arrays. The algorithm proposed by Jiang et al. in [59] is incorrect. Lyle
and Binkley [74] presented an algorithm for static slicing in the presence of pointers, but only

57

for straight-line code. Agrawal, DeMillo, and Spafford [73] propose a PDG-based algorithm for
static slicing in the presence of composite variables and pointers.

concurrency. The only approach for static slicing of concurrent programs was proposed by
Cheng [76]. Unfortunately, Cheng has not provided a justification of the correctness of his
algorithm.

7.2 Dynamic slicing algorithms

Algorithms for dynamic slicing were compared and classified in Section 4.5. Due to differences
in computation methods and dependence graph representations, the potential for integration of the
dynamic slicing solutions for “orthogonal” dimensions is less clear than in the static case. The
conclusions of Section 4.5 may be summarized as follows:

basic algorithms. Methods for intraprocedural dynamic slicing in the absence of procedures,
composite data types and pointers, and concurrency were proposed by Korel and Laski [9, 37],
Agrawal and Horgan [35], and Gopal [49]. The slices determined by the Agrawal-Horgan algo-
rithm and the Gopal algorithm are smaller than the slices computed by the Korel-Laski algorithm,
because Korel and Laski insist that their slices be executable programs. The Korel-Laski algorithm
and Gopal’s algorithm require an amount of space proportional to the number of statements that
was executed because the entire execution history of the program has to be stored. Since slices are
computed by traversing this history, the amount of time needed to compute a slice depends on the
number of executed statements. A similar statement can be made for the flowback analysis algo-
rithm by Choi et al. [11, 12]. The algorithm proposed by Agrawal and Horgan based on Reduced
Dynamic Dependence Graphs requires at most O�2n� space, where n is the number of statements
in the program. However, the time needed by the Agrawal-Horgan algorithm also depends on the
number of executed statements because for each executed statement, the dependence graph may
have to be updated.

procedures. Two dependence graph based algorithms for interprocedural dynamic slicing were
proposed by Agrawal, DeMillo, and Spafford [73], and by Kamkar, Shahmehri, and Fritzson
[87, 88]. The former method relies heavily on the use of memory cells as a basis for computing
dynamic reaching definitions. Various procedure-passing mechanisms can be modeled easily by
assignments of actual to formal and formal to actual parameters at the appropriate moments. The
latter method is also expressed as a reachability problem in a (summary) graph. However, there
are a number of differences with the approach of [73]. First, parts of the graph can be constructed
at compile-time. This is more efficient, especially in cases where many calls to the same procedure
occur. Second, Kamkar et al. study procedure-level slices; that is, slices consisting of a set of
procedure calls rather than a set of statements. Third, the size of a summary graph depends on the
number of executed procedure calls, whereas the graphs of Agrawal et al. are more space efficient
due to “fusion” of vertices with the same transitive dependences. It is unclear if one algorithm
produces more precise slices than the other.

unstructured control flow. As far as we know, dynamic slicing in the presence of unstructured
control flow has not been studied yet. However, it is our conjecture that the solutions for the static
case [45, 46, 47, 48] may be adapted for dynamic slicing.

58

composite data types/pointers. Two approaches for dynamic slicing in the presence of com-
posite data types and pointers were proposed, by Korel and Laski [37], and Agrawal, DeMillo,
and Spafford [73]. The algorithms differ in their computation method: dynamic flow concepts
vs. dependence graphs, and in the way composite data types and pointers are represented. Korel
and Laski treat components of composite data types as distinct variables, and invent names for
dynamically allocated objects and pointers whereas Agrawal, DeMillo, and Spafford base their
definitions on definitions and uses of memory cells. It is unclear how the accuracy of these algo-
rithms compares. The time and space requirements of both algorithms are essentially the same as
in the case where only scalar variables occur.

concurrency. Several methods for dynamic slicing of distributed programs have been proposed.
Korel and Ferguson [89] and Duesterwald, Gupta, and Soffa [91] compute slices that are executable
programs, but have a different way of dealing with nondeterminism in distributed programs: the
former approach requires a mechanism for replaying the rendezvous in the slice in the same relative
order as they occurred in the original program whereas the latter approach replaces nondetermin-
istic communication statements in the program by deterministic communication statements in the
slice. Cheng [76] and Choi et al. [11, 12] do not consider this problem because the slices they
compute are not executable programs. Duesterwald, Gupta, and Soffa [91] and Cheng [76] use
static dependence graphs for computing dynamic slices. Although this is more space-efficient than
the other approaches, the computed slices will be inaccurate (see the discussion in Section 4.1.1).
The algorithms by Korel and Ferguson and by Choi et al. both require an amount of space that
depends on the number of executed statements. Korel and Ferguson require their slices to be exe-
cutable; therefore these slices will contain more statements than those computed by the algorithm
of [11, 12].

7.3 Applications

Weiser [1] originally conceived of program slices as a model of the mental abstractions made by
programmers when debugging a program, and advocated the use of slicing in debugging tools.
The use of slicing for (automated) debugging was further explored by Lyle and Weiser [19], Choi
et al. [12], Agrawal et al. [20], Fritzson et al. [21], and Pan and Spafford [22, 23]. Slicing has
also proven to be of use for a variety of other applications including: parallelization [24], program
differencing and integration [25, 26], software maintenance [27], testing [13, 28, 29, 30], reverse
engineering [31, 32, 33], and compiler tuning [34]. Section 5 contains a detailed overview of how
slicing is used in each of these application areas.

7.4 Recent developments

Two important characteristics of conventional slicing algorithms adversely affect the accuracy of
program slices:

 The fact that slices consist of a subset of the original program’s statements, sometimes with
the additional constraint that a slice must be a syntactically valid program.

 The fact that slices are computed by tracing data and control dependences.

Section 6 discusses recent work by Field, Ramalingam, and Tip [18] and by Ernst [50] for
computing more accurate slices, where these “restrictions” are removed. In essence, these slicing

59

algorithms compute more accurate slices due to the use of compiler-optimization techniques,
symbolic execution, and a variety of semantics-preserving transformations for eliminating spurious
dependences. At the conceptual level, the algorithms by Field et al. and Ernst consist of the
following components:

 Translation of a program to a suitable intermediate representation (IR).

 Transformation and optimization of the IR.

 Maintaining a mapping between the source text, the original IR, and the optimized IR.

 Extraction of slices from the IR.

Although Field et al. and Ernst have reported promising results, much work remains to be done in
this area.

7.5 Visualizing program slices

Thus far, the emphasis of most slicing research has been on algorithmic aspects. Little attention
has been paid to the question of how slices could best be visualized and interactively displayed
or browsed [33, 50]. The recently developed SeeSlice tool of Ball and Eick [108] provides some
interesting new ideas for visualizing slices of large programs.

Acknowledgements

I am grateful to John Field, Jan Heering, Susan Horwitz, Paul Klint, G. Ramalingam, and Tom
Reps for many fruitful discussions and comments on earlier drafts of this paper. The anonymous
referees provided many constructive comments that I found extremely useful. Tom Reps provided
the program and picture of Figure 12. Susan Horwitz provided the program of Figure 15. The
programs shown in Figures 2 and 18 are adaptations of example programs that occur in Agrawal’s
dissertation [93]. The program of Figure 19 was suggested by anonymous referee B.

References

[1] M. Weiser. Program slices: formal, psychological, and practical investigations of an automatic program
abstraction method. PhD thesis, University of Michigan, Ann Arbor, 1979.

[2] M. Weiser. Programmers use slices when debugging. Communications of the ACM, 25(7):446–452, 1982.

[3] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357, 1984.

[4] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software development environment. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, pages 177–184, 1984. SIGPLAN Notices 19(5).

[5] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler optimizations.
In Conference Record of the Eighth ACM Symposium on Principles of Programming Languages, pages 207–218,
1981.

[6] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence graph and its use in optimization. ACM
Transactions on Programming Languages and Systems, 9(3):319–349, 1987.

[7] J.-F. Bergeretti and B.A. Carré. Information-flow and data-flow analysis of while-programs. ACM Transactions
on Programming Languages and Systems, 7(1):37–61, 1985.

60

[8] T. Reps and T. Bricker. Illustrating interference in interfering versions of programs. In Proceedings of the Second
International Workshop on Software Configuration Management, pages 46–55, Princeton, 1989. ACM SIGSOFT
Software Engineering Notes Vol.17 No.7.

[9] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–163, 1988.

[10] R.M. Balzer. EXDAMS - Extendable Debugging And Monitoring System. In Proceedings of the AFIPS SJCC,
volume 34, pages 567–586, 1969.

[11] B.P. Miller and J.-D. Choi. A mechanism for efficient debugging of parallel programs. In Proceedings of the
ACM SIGPLAN’88 Conference on Programming Language Design and Implementation, pages 135–144, Atlanta,
1988. SIGPLAN Notices 23(7).

[12] J.-D. Choi, B.P. Miller, and R.H.B. Netzer. Techniques for debugging parallel programs with flowback analysis.
ACM Transactions on Programming Languages and Systems, 13(4):491–530, 1991.

[13] E. Duesterwald, R. Gupta, and M.L. Soffa. Rigorous data flow testing through output influences. In Proceedings
of the Second Irvine Software Symposium ISS’92, pages 131–145, California, 1992.

[14] M. Kamkar. Interprocedural Dynamic Slicing with Applications to Debugging and Testing. PhD thesis, Link̈oping
University, 1993.

[15] G.A. Venkatesh. The semantic approach to program slicing. In Proceedings of the ACM SIGPLAN’91 Conference
on Programming Language Design and Implementation, pages 107–119, 1991. SIGPLAN Notices 26(6).

[16] J.Q. Ning, A. Engberts, and W. Kozaczynski. Automated support for legacy code understanding. Communications
of the ACM, 37(3):50–57, 1994.

[17] J. Field and F. Tip. Dynamic dependence in term rewriting systems and its application to program slicing. In
M. Hermenegildo and J. Penjam, editors, Proceedings of the Sixth International Symposium on Programming
Language Implementation and Logic Programming, volume 844, pages 415–431. Springer-Verlag, 1994.

[18] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In Conference Record of the Twenty-Second
ACM Symposium on Principles of Programming Languages, pages 379–392, San Francisco, CA, 1995.

[19] J.R. Lyle and M. Weiser. Automatic bug location by program slicing. In Proceedings of the Second International
Conference on Computers and Applications, pages 877–883, Beijing (Peking), China, 1987.

[20] H. Agrawal, R.A. DeMillo, and E.H. Spafford. Debugging with dynamic slicing and backtracking. Software—
Practice and Experience, 23(6):589–616, 1993.

[21] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. Generalized algorithmic debugging and testing. ACM
Letters on Programming Languages and Systems, 1(4):303–322, 1992.

[22] H. Pan. Software Debugging with Dynamic Intrumentation and Test-Based Knowledge. PhD thesis, Purdue
University, 1993.

[23] Hsin Pan and Eugene H. Spafford. Fault localization methods for software debugging. Journal of Computer and
Software Engineering, 1994. To appear.

[24] M. Weiser. Reconstructing sequential behavior from parallel behavior projections. Information Processing
Letters, 17(3):129–135, 1983.

[25] S. Horwitz. Identifying the semantic and textual differences between two versions of a program. In Proceedings
of the ACM SIGPLAN’90 Conference on Programming Language Design and Implementation, pages 234–245,
White Plains, New York, 1990. SIGPLAN Notices 25(6).

[26] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs. ACM Transactions on
Programming Languages and Systems, 11(3):345–387, 1989.

[27] K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance. IEEE Transactions on Software
Engineering, 17(8):751–761, 1991.

[28] M. Kamkar, P. Fritzson, and N. Shahmehri. Interprocedural dynamic slicing applied to interprocedural data flow
testing. In Proceedings of the Conference on Software Maintenance, pages 386–395, Montreal, Canada, 1993.

[29] R. Gupta, M.J. Harrold, and M.L. Soffa. An approach to regression testing using slicing. In Proceedings of the
Conference on Software Maintenance, pages 299–308, 1992.

[30] S. Bates and S. Horwitz. Incremental program testing using program dependence graphs. In Conference Record
of the Twentieth ACM Symposium on Principles of Programming Languages, pages 384–396, Charleston, SC,
1993.

61

[31] J. Beck and D. Eichmann. Program and interface slicing for reverse engineering. In Proceedings of the 15th
International Conference on Software Engineering, Baltimore, 1993.

[32] Daniel Jackson and Eugene J. Rollins. A new model of program dependences for reverse engineering. In
Proceedings of the Second ACM SIGSOFT Conference on Foundations of Software Engineering, New Orleans,
LA, December 1994.

[33] Daniel Jackson and Eugene J. Rollins. Abstraction mechanisms for pictorial slicing. In Proceedings of the IEEE
Workshop on Program Comprehension, Washington, November 1994.

[34] J.R. Larus and S. Chandra. Using tracing and dynamic slicing to tune compilers. Computer sciences technical
report #1174, University of Wisconsin-Madison, 1993.

[35] H. Agrawal and J.R. Horgan. Dynamic program slicing. In Proceedings of the ACM SIGPLAN’90 Conference
on Programming Language Design and Implementation, pages 246–256, 1990. SIGPLAN Notices 25(6).

[36] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26–61, 1990.

[37] B. Korel and J. Laski. Dynamic slicing of computer programs. Journal of Systems and Software, 13:187–195,
1990.

[38] A. Lakhotia. Graph theoretic foundations of program slicing and integration. Report CACS TR-91-5-5, University
of Southwestern Louisiana, 1991.

[39] R. Gupta and M.L. Soffa. A framework for generalized slicing. Technical report TR-92-07, University of
Pittsburgh, 1992.

[40] S. Horwitz and T. Reps. The use of program dependence graphs in software engineering. In Proceedings of the
14th International Conference on Software Engineering, pages 392–411, Melbourne, Australia, 1992.

[41] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. In Conference Record of the
ACM SIGSOFT/SIGPLAN Symposium on Principles of Programming Languages, pages 133–145, 1988.

[42] T. Reps and W. Yang. The semantics of program slicing and program integration. In Proceedings of the
Colloquium on Current Issues in Programming Languages, volume 352 of Lecture Notes in Computer Science,
pages 60–74. Springer Verlag, 1989.

[43] S. Horwitz and T. Reps. Efficient comparison of program slices. Acta Informatica, 28:713–732, 1991.

[44] M. Kamkar. An overview and comparative classification of static and dynamic program slicing. Technical Report
LiTH-IDA-R-91-19, Linköping University, Linköping, 1991. To appear in Journal of Systems and Software.

[45] T.J. Ball. The Use of Control-Flow and Control Dependence in Software Tools. PhD thesis, University of
Wisconsin-Madison, 1993.

[46] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In P. Fritzson, editor, Proceedings of
the First International Workshop on Automated and Algorithmic Debugging, volume 749 of Lecture Notes in
Computer Science, pages 206–222. Springer-Verlag, 1993.

[47] H. Agrawal. On slicing programs with jump statements. In Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation, pages 302–312, Orlando, Florida, 1994. SIGPLAN
Notices 29(6).

[48] J.-D. Choi and J. Ferrante. Static slicing in the presence of goto statements. ACM Transactions on Programming
Languages and Systems, 16(4):1097–1113, July 1994.

[49] R. Gopal. Dynamic program slicing based on dependence relations. In Proceedings of the Conference on
Software Maintenance, pages 191–200, 1991.

[50] Michael Ernst. Practical fine-grained static slicing of optimized code. Technical Report MSR-TR-94-14,
Microsoft Research, Redmond, WA, 1994.

[51] William Landi and Barbara G. Ryder. Pointer-induced aliasing: A problem classification. In Proceedings of the
Eighteenth ACM Symposium on Principles of Programming Languages, pages 93–103, January 1991.

[52] W. Landi and B.G. Ryder. A safe approximate algorithm for interprocedural pointer aliasing. In Proceedings
of the 1992 ACM Conference on Programming Language Design and Implementation, pages 235–248, San
Francisco, 1992. SIGPLAN Notices 27(7).

[53] S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence graphs for representing programs. In
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages
146–157. ACM, 1988.

62

[54] M. Weiser. Private communication, 1994.

[55] H.K.N. Leung and H.K. Reghbati. Comments on program slicing. IEEE Transactions on Software Engineering,
SE-13(12):1370–1371, 1987.

[56] J.R. Lyle. Evaluating Variations on Program Slicing for Debugging. PhD thesis, University of Maryland, 1984.

[57] P. Hausler. Denotational program slicing. In Proceedings of the 22nd Hawaii International Conference on System
Sciences, pages 486–494, Hawaii, 1989.

[58] J.M. Barth. A practical interprocedural data flow analysis algorithm. Communications of the ACM, 21(9):724–
736, 1978.

[59] J. Jiang, X. Zhou, and D.J. Robson. Program slicing for C - the problems in implementation. In Proceedings of
the Conference on Software Maintenance, pages 182–190, 1991.

[60] T. Reps. Private communication, 1994.

[61] J.C. Hwang, M.W. Du, and C.R. Chou. Finding program slices for recursive procedures. In Proceedings of the
12th Annual International Computer Software and Applications Conference, Chicago, 1988.

[62] T. Reps. On the sequential nature of interprocedural program-analysis problems. Unpublished report, University
of Copenhagen, 1994.

[63] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings of the Second ACM SIGSOFT
Conference on Foundations of Software Engineering, New Orleans, LA, December 1994. To appear.

[64] David Binkley. Slicing in the presence of parameter aliasing. In Proceedings of the Third Software Engineering
Research Forum, pages 261–268, Orlando, Florida, November 1993.

[65] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques and Tools. Addison-Wesley, 1986.

[66] J.P. Banning. An efficient way to find the side effects of procedure calls and the aliases of variables. In Conference
Record of the Sixth ACM Symposium on Principles of Programming Languages, pages 29–41, 1979.

[67] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph reachability. Report DIKU TR
94-14, University of Copenhagen, Copenhagen, 1994.

[68] David Binkley. Precise executable interprocedural slices. ACM Letters on Programming Languages and Systems,
2(1–4):31–45, 1993.

[69] A. Lakhotia. Improved interprocedural slicing algorithm. Report CACS TR-92-5-8, University of Southwestern
Louisiana, 1992.

[70] K.B. Gallagher. Using Program Slicing in Software Maintenance. PhD thesis, University of Maryland, 1989.

[71] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-induced
aliases and side effects. In Conference Record of the Twentieth ACM Symposium on Principles of Programming
Languages, pages 232–245. ACM, 1993.

[72] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In Proceedings of the ACM 1989
Conference on Programming Language Design and Implementation, Portland, Oregon, 1989. SIGPLAN Notices
24(7).

[73] H. Agrawal, R.A. DeMillo, and E.H. Spafford. Dynamic slicing in the presence of unconstrained pointers. In
Proceedings of the ACM Fourth Symposium on Testing, Analysis, and Verification (TAV4), pages 60–73, 1991.
Also Purdue University technical report SERC-TR-93-P.

[74] James R. Lyle and David Binkley. Program slicing in the presence of pointers. In Proceedings of the Third
Software Engineering Research Forum, pages 255–260, Orlando, Florida, November 1993.

[75] W.E. Weihl. Interprocedural data flow analysis in the presence of pointers, procedure variables, and label
variables. In Conference Record of the Seventh ACM Symposium on Principles of Programming Languages,
pages 83–94, 1980.

[76] J. Cheng. Slicing concurrent programs – a graph-theoretical approach. In P. Fritzson, editor, Proceedings of
the First International Workshop on Automated and Algorithmic Debugging, volume 749 of Lecture Notes in
Computer Science, pages 223–240. Springer-Verlag, 1993.

[77] A. Podgurski and L.A. Clarke. A formal model of program dependences and its implications for software testing,
debugging, and maintenance. IEEE Transactions on Software Engineering, 16(9):965–979, 1990.

63

[78] D. Binkley. Interprocedural constant propagation using dependence graphs and a data-flow model. In P.A.
Fritzson, editor, Proceedings of the 5th International Conference on Compiler Construction—CC’94, volume
786 of LNCS, pages 374–388, Edinburgh, UK, 1994.

[79] F. Tip. Generation of Program Analysis Tools. PhD thesis, University of Amsterdam, 1995.

[80] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F.K. Zadeck. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, 1991.

[81] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing control regions
in linear time. In Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and
Implementation, pages 171–185, Orlando, Florida, 1994. SIGPLAN Notices 29(6).

[82] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in programs. In Conference Record
of the Fifteenth ACM Symposium on Principles of Programming Languages, pages 1–11, San Diego, 1988.

[83] W. Yang, S. Horwitz, and T. Reps. A program integration algorithm that accommodates semantics-preserving
transformations. In Proceedings of the Fourth ACM SIGSOFT Symposium on Software Development Envi-
ronments, pages 133–143, Irvine, CA, December 1990. ACM SIGSOFT Software Engineering Notes Vol.15
No.6.

[84] K.D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. In Proceedings of the
ACM SIGPLAN’88 Conference on Programming Language Design and Implementation, pages 57–66, Atlanta,
Georgia, 1988. SIGPLAN Notices 23(7).

[85] D.E. Maydan, J.L. Hennessy, and M.S. Lam. Efficient and exact data dependence analysis. In Proceedings of
the ACM SIGPLAN’91 Conference on Programming Language Design and Implementation, pages 1–14, 1991.
SIGPLAN Notices 26(6).

[86] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press Frontier Series. ACM
Press, New York, 1991.

[87] M. Kamkar, N. Shahmehri, and P. Fritzson. Interprocedural dynamic slicing and its application to generalized al-
gorithmic debugging. In Proceedings of the International Conference on Programming Language Implementation
and Logic Programming, PLILP ’92, 1992.

[88] M. Kamkar, P. Fritzson, and N. Shahmehri. Three approaches to interprocedural dynamic slicing. Microprocessing
and Microprogramming, 38:625–636, 1993.

[89] B. Korel and R. Ferguson. Dynamic slicing of distributed programs. Applied Mathematics and Computer Science,
2(2):199–215, 1992.

[90] J.G.P. Barnes. Programming in Ada. International Computer Science Series. Addison-Wesley, second edition,
1982.

[91] E. Duesterwald, R. Gupta, and M.L. Soffa. Distributed slicing and partial re-execution for distributed programs.
In Proceedings of the fifth workshop on Languages and Compilers for Parallel Computing, pages 329–337, New
Haven, Connecticut, 1992.

[92] F. Tip. Generic techniques for source-level debugging and dynamic program slicing. Report CS-R9453, Centrum
voor Wiskunde en Informatica (CWI), 1994. To appear in Proc. TAPSOFT’95.

[93] H. Agrawal. Towards automatic debugging of Computer Programs. PhD thesis, Purdue University, 1991.

[94] E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[95] N. Shahmehri. Generalized Algorithmic Debugging. PhD thesis, Linköping University, 1991.

[96] T. Reps. Algebraic properties of program integration. Science of Computer Programming, 17:139–215, 1991.

[97] David Binkley, Susan Horwitz, and Thomas Reps. Program integration for languages with procedure calls, 1994.
Submitted for publication.

[98] David Binkley. Using semantic differencing to reduce the cost of regression testing. In Proceedings of the IEEE
Conference on Software Maintenance, Orlando, Florida, November 1992.

[99] L. M. Ott and J.J. Thuss. The relationship between slices and module cohesion. In Proceedings of the 11th
International Conference on Software Engineering, pages 198–204, 1989.

[100] J.C. Hwang, M.W. Du, and C.R. Chou. The influence of language semantics on program slices. In Proceedings
of the 1988 International Conference on Computer Languages, Miami Beach, 1988.

64

[101] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2):181–210, 1991.

[102] J. Field. A simple rewriting semantics for realistic imperative programs and its application to program analysis. In
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
pages 98–107, 1992. Published as Yale University Technical Report YALEU/DCS/RR–909.

[103] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic
in Computer Science, Volume 2. Background: Computational Structures, pages 1–116. Oxford University Press,
1992.

[104] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R. Sleep. Term
graph rewriting. In Proc. PARLE Conference, Vol. II: Parallel Languages, volume 259 of Lecture Notes in
Computer Science, pages 141–158, Eindhoven, The Netherlands, 1987. Springer-Verlag.

[105] P. Klint. A meta-environment for generating programming environments. ACM Transactions on Software
Engineering and Methodology, 2(2):176–201, 1993.

[106] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press Frontier Series. The ACM
Press in co-operation with Addison-Wesley, 1989.

[107] D. Weise, R.F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs: Representation without taxation.
In Conference Record of the Twenty-First ACM Symposium on Principles of Programming Languages, pages
297–310, Portland, OR, 1994.

[108] Thomas Ball and Stephen G. Eick. Visualizing program slices. In Proceedings of the IEEE Symposium on Visual
Languages, pages 288–295, St. Louis, Missouri, October 1994.

65

